A Literature Survey of Effective Techniques to
Reduce Simulation Time

Veynu Narasiman
narasima@ece.utexas.edu

1 Introduction

As microprocessor complexity increases,
the time required to complete a thorough
simulation of an entire benchmark will be-
come a bigger and bigger challenge that
computer architects have to face. This sim-
ulation time is orders of magnitude greater
than the time required to run the benchmark
on real hardware, thus, it is no longer fea-
sible to simulate long benchmarks in their
entirety. Given such a scenario, there is a
definite need to reduce this simulation time
so that computer architecture research can
be performed efficiently in the future. In
this paper, we present literature that suggests
different techniques to reduce the amount of
code being simulated, thereby greatly reduc-
ing the simulation time.

We are going to discuss six papers in
the field. The first paper [14] is from a
recent conference that identifies many of the
various techniques that are being used to
solve the aforementioned problem and also
evaluates the effectiveness of each technique.
This paper serves as an excellent introduc-
tion to the topic at hand. The conclusion of
this paper is that sampling the benchmark
trace is the most effective technique for fast
simulation.

The remaining papers discuss two main
types of sampling techniques. The first is sta-
tistical sampling, where randomly selected
samples are used to represent the overall
performance of a benchmark on a machine.
The other method involves selecting only
a single or a few strategically chosen (not
random) samples, which are believed to be

Aater Suleman
suleman @ece.utexas.edu

representative of the overall behavior of the
program. This method, according to [14], is
the best trade-off in terms of simulation time
and accuracy.

The second paper [13] describes in more
detail the statistical sampling approach, its
methodology, and its effectiveness. The next
three papers we present [12], [3], and [2] de-
scribe in detail the strategic approach to se-
lecting samples. Although they use the same
general approach, the difference between the
techniques presented in these papers lies in
the methods and criteria used to select the
representative samples. We will describe and
analyze them in detail later in the paper.

The last paper we present [10] may seem
like a slight digression from the subject, but
it is perhaps the one most importantly related
to strategic sampling. This paper describes
sampling at a different granularity (i.e. se-
lecting benchmarks out of a benchmark suite
that are most representative of the behavior
of the entire suite). The paper lists many
characteristics that can be attributed to a
program. While some of these attributes have
already been used by [12], [3], and [2]
for strategic sampling, there is still room
to use these metrics and their appropriate
permutations to pick samples that are most
representative for all sets of applications.

2 Summaries of Articles
2.1 Characterizing and Comparing
Prevailing Simulation Techniques

This paper aims to describe and com-
pare prominent simulation techniques that

are currently being used by computer ar-
chitects to overcome the problem of long
simulation times. According to the author,
these techniques can be split into three
major categories: 1)Reduced input set, 2)
Truncated execution, 3) Sampling. The pa-
per compares candidates from each of these
categories based on three different char-
acterization methods, namely Performance
Bottleneck Characterization, Execution Pro-
file Characterization, and Architectural Level
Characterization. In addition to the three
characterization methods, the paper also de-
scribes two other metrics that can be used
as criteria to compare simulation techniques,
namely speed versus accuracy and archi-
tectural dependence. The five comparison
criteria as well as significant experimental
results are discussed below.

2.1.1 Performance Bottleneck Character-
ization

Performance Bottleneck Characterization
is performed using the Plackett and Burnam
(PB) design. The PB design is used to calcu-
late the effect of memory and processor pa-
rameters on the Instructions Per Cycle (IPC).
These parameters are then ranked based on
their PB magnitudes and vectorized. A single
vector is computed for each candidate. These
vectors are then used to compare each candi-
date with the reference input. The difference
between each candidate and the reference
input set is quantized using the Euclidean
distance.

In this experiment, it was observed that
the sampling techniques (SMARTS and Sim-
Point) were the alternatives with the least
Euclidean distance from the reference in-
put, hence they were the most representa-
tive of the reference input. The Euclidean
distance between reduced input set and ref-
erence input varied significantly across all
benchmarks. The paper concludes, after fur-
ther analysis, that reduced input set in fact
simulates a very different program as com-
pared to the reference input set and there-
fore is not representative of the reference

input. The truncated execution candidates
also performed poorly because the portion of
the program that was executed was chosen
arbitrarily, thus, there were no guarantees
regarding the representativeness.

2.1.2 Execution Profile Characterization

Execution Profile Characterization is per-
formed by recording the Basic Block Ex-
ecution Frequencies (BBEF) of a program.
A basic block is a section of code that is
executed from start to finish with one entry
and one exit. To compute a BBEF, whenever
a basic block is executed, the basic block
counter is incremented by the number of
instructions that were executed in that block.
Once the BBEF vectors for the reference in-
put and each candidate have been computed,
they are compared using the 2 statistic.

The observed results were comparable to
the results obtained using Performance Bot-
tleneck Characterization. The reduced input
and truncated execution techniques had very
different execution profiles when compared
to the reference input. However, sampling
techniques had an execution profile similar
to the reference input set.

2.1.3 Architectural Level Characteriza-
tion

Architectural Level Characterization is
performed by recording a set of architectural
metrics such as IPC, branch prediction ac-
curacy, and cache hit rate. These metrics are
vectorized and the vectors are then compared
with the vector obtained from the reference
input set using the Euclidean distance. The
results obtained were the same as the results
of Performance Bottleneck and Execution
Profile Characterization.

2.1.4 Speed vs. Accuracy

There is always a trade-off between sim-
ulation time and accuracy which makes this
metric very important. This metric is com-
puted by calculating the Manhattan distance
between the CPIs of each candidate and the
reference input set, then plotting it against

the normalized simulation time (normalized
with respect to the simulation time of the
reference input). It was concluded that sam-
pling techniques performed significantly bet-
ter than both reduced input set and truncated
execution.

2.1.5 Architectural Configuration Depen-
dence

The last metric the paper uses for
comparison is Architectural Configuration
Dependence. The accuracy of an ideal
technique should remain constant over all
architectural configurations. Experiments
were performed in order to gauge the
configuration dependence of the candidates.
The results obtained suggest that this metric
is correlated with the accuracy computed in
the three characterization methods described
earlier.

Based on the five criteria, sampling the
benchmarks proved to be the most effective
technique to reduce the length of a bench-
mark for detailed execution. We will build
upon this conclusion, and the remaining pa-
pers discussed in this review will further
explore the prevailing sampling techniques.

2.2 SMARTS: Accelerating
Microarchitecture Simulation via
Rigorous Statistical Sampling

This paper describes methods to statis-
tically sample full length benchmarks. It
describes a framework, SMARTS, that accel-
erates the simulation of a benchmark by se-
lectively measuring in detail only an appro-
priate subset of a benchmark. The SMARTS
approach involves applying statistical sam-
pling theory in order to select an appropri-
ate number of program subsets and ensure
representativeness of the entire program.

This paper asserts that systematic sam-
pling is preferred to random sampling for
sampling benchmarks because benchmarks
do not show conceivable patterns, and
also because systematic sampling is eas-
ier to implement in event-driven simulators.

SMARTS takes a periodic approach where
CPI is sampled at fixed intervals. Only the
instructions in the sampling unit are exe-
cuted in detailed simulation mode, whereas
others are simulated using a functional sim-
ulator. SMARTS can estimate the average
CPI of the entire benchmark by averaging
the CPIs of all the samples. More impor-
tantly, SMARTS can also provide a measure
of representativeness that can be computed
by calculating the confidence of the CPI
estimate. In summary, SMARTS prescribes
an exact procedure to generate an accurate
performance estimate by measuring only a
minimal subset of instructions.

Architects face several challenges when
using SMARTS. The most important is the
cold start problem which expresses con-
cern about the inaccurate microarchitectural
state of the machine (due to incomplete
simulation) prior to the execution of each
sampling unit. This problem is overcome
by performing functional simulation on all
the instructions between the sampling units,
and detailed simulation on a few instruc-
tions before each sampling unit. Only the
microarchitectural state of the machine is up-
dated during the functional simulation phase.
The architectural state is updated only in
detailed simulation mode. There are certain
discrepancies associated with this warm-up
approach. The state thus computed may not
be accurate as it does not include the ef-
fects of out-of-order execution and specula-
tive event ordering. According to the author,
these effects are minimal and can be ignored.

The SMARTS framework takes three in-
puts as parameters, U (the sampling unit size
in instruction), W (detailed warming unit
size in instructions), and N (the number of
sampling units in benchmark). These three
parameters can be varied in order to adjust
the speed versus accuracy trade-off. The au-
thors suggest that a sampling unit of 1000
instructions is most optimum for any bench-
mark. They also define two variables n and &
where n is the number of samples collected
from the benchmark and £ is the number

of sampling intervals between two consecu-
tive samples. Therefore, n=N/k. The authors
provide a statistical method to determine n or
k for a certain required accuracy. However,
the parameter W is difficult to estimate. In
order to keep the errors introduced due to
bad warm-up below 1.5%, some SPEC 2000
benchmarks require a W greater than 50,000.
Although 50,000 is a small percentage of the
benchmark itself, it can still add considerable
overhead to the simulation time. The authors
did further analysis to limit W. It is stated
that functional warming reduces the value of
W signifcantly and puts an uppderbound on
W. This upper bound is equal to the product
of store-buffer depth, memory latency in
cycles, and the maximum IPC. This bound
is an upper-bound that is applicable only to
the worst case scenarios, hence a relatively
smaller W (2000 or 4000) can be used.
The authors also evaluate the performance
and accuracy of SMARTS on the SPEC
2000 benchmark. SMARTSim (a simulator
developed by the authors) is only 50%
slower than an average functional only
simulator. This shows that the results are
promising in terms of both performance and
accuracy. To conclude, the authors compare
their results to another prevailing technique,
SimPoint, that uses strategic sampling
(SimPoint is described in much greater
detail in the summary of [12] below). The
authors observed that SMARTS outperforms
SimPoint in accuracy. In addition, they
point out an important fact that SimPoint
does not estimate the representativeness of
the samples like SMARTS does, making
SMARTS a more attractive alternative.

Now we will move to our discussion of
SimPoint by summarizing a recent paper
published on SimPoint in ASPLOS X.

2.3 Automatically Characterizing
Large Scale Program Behavior

This paper introduces a new technique
of analyzing programs to help understand

the large scale program behavior of even
the most complex applications. The cluster-
ing tool described in this paper is called
SimPoint and is available at [1]. Using Ba-
sic Block Vectors combined with clustering,
SimPoint accurately identifies similar inter-
vals within a large application and strategi-
cally chooses sample intervals that are highly
representative of the entire program. Only
thoroughly simulating (detailed simulation)
these sample intervals instead of the entire
program greatly reduces the simulation time
but still yields accurate results.

2.3.1 Basic Block Vectors

At the heart of the analysis lies the con-
cept of a Basic Block Vector, an idea orig-
inally presented in an earlier work [11] by
the same authors. A Basic Block Vector is
a single dimensional array with one entry
corresponding to each basic block within
a program (a basic block can be defined
as a section of code that is executed from
start to finish with only one entry and one
exit). Each entry within the vector contains
the number of times the corresponding basic
block was executed during a certain interval,
times the number of instructions within that
basic block. The vector is then normalized
by dividing each entry by the sum of all
the entries. This paper used an interval size
of 100 million instructions, thus for each
interval of 100 million instructions within a
large application, a new Basic Block Vec-
tor is tabulated. These vectors can now be
compared in order to determine how similar
different intervals are to each other.

Basic Block Vectors are compared by
calculating either the Euclidean or Manhat-
tan Distance between them. The Euclidean
Distance is found by taking the sum of
the square of the difference between corre-
sponding entries, while the Manhattan Dis-
tance represents the sum of the absolute
value of the difference between correspond-
ing entries. A similarity matrix can now
be computed where an entry (x,y) in the
matrix represents the similarity (Manhattan

Distance) between the xth and yth intervals.
By analyzing the similarity matrix, one can
identify similar intervals and identify phases
within a program. This paper calculates the
similarity matrix for some common applica-
tions (gzip, bzip, and gcc) and shows that the
phases identified using the similarity matrix
line up quite closely with the actual program
behavior.

2.3.2 Clustering

Now that we know the similarity among
different intervals, we can group the intervals
into clusters. This paper uses a partitioning
algorithm known as K-means [6] in order
to cluster the intervals. K-means clustering
works as follows:

1) Initially, K intervals from the set of all
intervals are randomly selected to be
the cluster centers.

2) Next, each interval is assigned to the
cluster center that it is closest to (Man-
hattan distance is the smallest).

3) Lastly, each cluster center is recalcu-
lated as the average of all the members
of that cluster (the members were as-
signed in step 2).

4) Steps 2 and 3 are repeated until cluster
membership stops changing between
successive iterations.

In the above algorithm, K represents the
number of clusters. This paper runs the
above algorithm for K values 1 to 10, and
then uses the Bayesian Information Criterion
[8] to select the K value that is the best fit
for the data. By the end of the algorithm, all
of the intervals are a member of 1 of the K
clusters, and each cluster has a cluster center
(also called centroid) which is the average of
all the intervals in that cluster.

Multiple simulation points can now be
chosen based upon this information. One
interval from each cluster is chosen to rep-
resent the entire cluster. The interval that is
chosen is the one that is closest to the cluster
center. In addition, each interval chosen is
accompanied by a weight based on the size
of the cluster it is representing. Together,

the selected intervals and their correspond-
ing weights accurately represent the entire
program.

The results obtained using this technique
were very promising. The IPC calculated
from simulating only the chosen intervals
and taking into account their weights,
was within 3% of the actual IPC obtained
by simulating the program in its entirety,
justifying the effectiveness of this technique.

Several other SimPoint-based techniques
have also been introduced by researchers
for strategic sampling. The primary differ-
ence between such proposals and the one
presented in this paper is the use of other
metrics instead of the Basic Block Vector.
Next, we will discuss some of these related
techniques.

2.4 Structures for Phase Classifica-
tion

This paper explores the effectiveness of
different program structures’ ability to cap-
ture phase behavior. The SimPoint clustering
tool is used, but instead of sending the tool
Basic Block Vector data, different criteria are
used and their accuracy is evaluated.

2.4.1 Control Flow Structures

Instead of breaking up a program into
basic blocks and using Basic Block Vectors,
this paper introduces the idea of using loop
vectors, and procedure vectors. For loop
vectors, the entire program is divided into
loops, and there is an entry in the vector
corresponding to each loop in the program.
The number of times each loop is entered
during a certain interval is recorded, and
that vector is than weighted and normalized
just as explained earlier for Basic Block
Vectors. Procedure vectors work the same
way except for the fact that the program is
divided into static procedures, and there is
an entry in the vector corresponding to each
procedure. To evaluate the accuracy of using
different program structures for phase classi-
fication, this paper calculates the covariance

of CPI for each cluster SimPoint reported,
and then computes an average covariance
of all the clusters. This average covariance
is one number that represents how accurate
the phase classification really is. In addition,
the CPI obtained from simulating only the
intervals selected by SimPoint is compared
to the actual CPI obtained when simulating
the program in its entirety.

The results showed that the average co-
variance computed using loop vectors and
procedure vectors was comparable to that of
Basic Block Vectors. In addition, the per-
cent CPI error rate was only slightly greater
for procedures and loops when compared
to basic blocks. However, the loop vectors
and procedure vectors are much smaller than
Basic Block Vectors, and therefore remain a
valid alternative to using basic blocks.

2.4.2 Profiling Instruction Mix

In this section, memory instruction vec-
tors, and opcode vectors were introduced as
other options to profile a program. Memory
instruction vectors keep track of the number
of times every load or store is executed
during a certain interval. Opcode vectors
have 64 entries (since there are 64 opcodes in
the Alpha ISA) each representing the number
of times that particular opcode was executed
during a certain interval.

Once again, the results showed that the
average covariance using memory instruction
and opcode vectors was comparable to that
of Basic Block Vectors, but the CPI error
rate was in general greater.

2.4.3 Profiling Registers

This section introduces a method of track-
ing the uses/definitions of a given register
during a certain interval of execution. The
register use vector contains 32 entries (since
the Alpha ISA has 32 registers) each con-
taining the number of times that register was
used during a certain interval. Likewise, the
register definition vector tracks the number
of times a certain register was defined during
a given interval. Just as before, these vectors

are sent to SimPoint for clustering and phase
identification.

The results showed that tracking register
definitions produced results comparable to
using basic blocks with respect to average
covariance, as well as CPI percent error.

2.4.4 Stride Profiling

This section proposes the idea of cap-
turing the distribution of strides between
loads/stores to memory. For example, for
local stride profiling, if a certain load/store is
currently accessing memory location 8, but
previously that same load/store instruction
accessed location 4, we increment the 4th (8
minus 4 = 4) entry in the local stride vector.
This vector is, as usual, populated over a
given interval. A global stride vector is also
created in a similar fashion, but instead of
tracking the stride of individual loads/stores,
the stride between adjacent memory accesses
is recorded. In addition, a variation of these
vectors is introduced by hashing the index
into the local/global stride vector with the
lower bits from the PC. These are simply
known as local/global vectors with PC hash.
Once again, these vectors (one for each
interval) are sent to SimPoint for phase clas-
sification.

The results showed that the average co-
variance was lowest for local stride with
PC hash (global covariance was 7% higher),
and were comparable to that of Basic Block
Vectors. However, the CPI percent error was
once again, greater than that obtained by
using basic blocks.

2.4.5 Key Findings

Ultimately, this paper showed that using
register definition vectors and also loop
vectors are both attractive alternatives
to using basic blocks. Both vectors are
considerably smaller than Basic Block
Vectors and thus are easier to manage and
require fewer resources to track. Both also
yield results comparable to those of basic
blocks.

Now we move to the next paper which
describes another program metric that can
be used to detect the phase behavior of
a program. The paper summarized below
describes the use of memory access behavior
as a pattern detection mechanism.

2.5 Choosing Representative Slices
of Program Execution for Microar-
chitectural Simulation

This paper introduces a new method of
selecting representative slices of a program
to be used for simulations. The method de-
scribed in this paper is tailored to producing
accurate results for cache miss rate. In this
paper, a program is broken up into slices
each of which are 10 million instructions
long. These slices are then grouped together
to form classes. A representative slice from
each class is selected and used for detailed
simulation.

2.5.1 Metrics Used

To classify the slices into groups, the
individual slices must be profiled according
to some criteria. This paper introduces the
idea of Data Reuse Distance (RDI) which is
a measure of the number of instructions ex-
ecuted in between two accesses to the same
memory location. This value is calculated for
each memory access in the program. This
gives us information about the temporal lo-
cality of the slice. Calculating the RDI values
for many different cache line sizes gives us
information about the spatial locality of the
slice. For a given line size, and for each
integer n, the number of memory accesses
for which the RDI value is between 2" and
27=1 — 1 is recorded. This is done for each
slice of the program. This information is then
used to group the slices into classes.

2.5.2 Classification Method Used

This paper used a hierarchical grouping
algorithm to form classes. This particular
study used a tool known as CHAVL which
implements the Likelihood Linkage Analysis

(LLA) classification method [4] [5]. The data
that needs to be grouped into classes is
the RDI data tabulated as described in the
previous section. After classification, a rep-
resentative slice from each class is chosen.
The chosen slice is the one whose Euclidean
distance to the center of the class is least.
This Euclidean distance is known as the
“representativeness” of the selected slice.

This paper also defines an indicator,
known as the wmdc (weighted mean dis-
tances from centers) which is the weighted
average (according to number of members in
the class) of the “representativeness” of each
class. This number serves as an indication of
how representative the selected slices are of
the entire program. The smaller the wmdc,
the more representative the selected slices
are of the entire program.

2.5.3 Results

The method for choosing representative
slices presented in this paper was compared
to the method of choosing one big slice of
execution (truncated execution) and also to
the systematic statistical sampling method.
The relative percent error was calculated
by using the cache miss rate obtained by
simulating only the selected slices and the
actual cache miss rate obtained by simulating
the entire program. This study showed that
in general, the percent relative errors were
less using the method presented in this paper,
than when using the big slice or the system-
atic statistical sampling method. This led the
authors to two important conclusions:

1) The metrics chosen in this paper are
well suited for cache simulations.

2) This approach is really able to select a
few slices that accurately represent the
entire program.

2.6 Measuring Program Similarity

This paper aims to present a methodology
for measuring similarity between programs
using architecture independent criteria. Past

approaches to measuring program similar-
ity had primarily relied on architecture de-
pendant metrics, and thus did not produce
consistent results over a wide range of ar-
chitectural configurations. The end goal of
this study is to identify similarities between
groups of programs such that only one good
representative of the group can be simulated
instead of the whole group. If a subset of a
benchmark suite is chosen at random, there
is risk that the subset may solely consist of
benchmarks with similar characteristics. This
can skew the results of computer architecture
studies. To avoid the aforementioned prob-
lem, the authors propose a systematic ex-
perimental and statistical approach to better
characterize a group of programs.

The authors first define 29 different met-
rics on which programs were to be eval-
uated. These metrics can be divided into
categories such as instruction mix, branch
taken or not taken data, basic block size,
temporal locality, spatial locality, and depen-
dency information. The authors used these
29 microarchitecture independent metrics to
compare programs. The procedure they use
to select a subset from a whole suite of
benchmarks is described below.

Each metric is evaluated for every pro-
gram in the benchmark suite. Once the met-
rics have been computed, the data is vector-
ized. These 29-dimentional vectors are dif-
ficult to comprehend, so a technique called
Principal Component Analysis is used to
reduce them down to 6 dimensions. These
6-dimensional vectors are then used as input
to K-means algorithm for grouping. One
drawback of the K-means algorithms is that
K (the number of clusters) has to be specified
beforehand. This problem is overcome by
exploring various values of K in order to
find the optimum value K. The optimum
grouping is selected on the basis of Bayesian
Information Criteria (BIC). Once completed,
this methodology yields a subsetting of the
set of programs where each member of a
group has similar characteristics. A represen-
tative set of programs can then be picked by

selecting one program from each group. The
program that is picked from each group is
the one closest to the center of the group.

The above mentioned procedure is fur-
ther illustrated by an example of subset-
ting the SPEC CPU2000 benchmark suite.
The microarchitecture independent charac-
teristics were measured for each benchmark.
Details of these results can be seen in [9].
The SimPoint program is then used to ob-
tain two different types of groupings for
the benchmark suite. One is based on all
29 characteristics and the other is based on
7 data locality characteristics only. Using
all 29 characteristics, the optimum K value
(number of clusters) computed was 8. Using
only the 7 data locality characteristics, the
number of clusters was determined to be 9.

The evaluation methodology used by the
authors is similar to the methodology de-
scribed in [14] as the Architectural Char-
acterization. First, the average IPC of the
entire suite is calculated and then compared
to the average IPC calculated using the
chosen subset. The two IPCs differ by a
very small amount on two different machine
configurations, validating both the accuracy
and microarchitecture independence of this
technique. Second, a similar comparison is
done on the basis of L1 D-cache miss-rate
and the results again turned out to be promis-
ing. Another set of results presented is the
sensitivity of accuracy to the number of rep-
resentatives chosen. The results are intuitive,
as we increase the number of representative
elements, the average cache miss rate of the
subset approaches the average cache miss
rate of the whole suite.

This paper also provides an analysis of
all the SPEC benchmarks suites. The results
show that all the SPEC CPU benchmarks
overlap in terms of instruction locality char-
acteristics, implying that these characteristics
have not changed over the past decade. Sim-
ilar results are drawn for the branch char-
acteristics and instruction level parallelism.
It can also be seen that the floating point
benchmarks have longer dependency chains

compared to integer benchmarks and floating
point branches are mostly loop branches
compared to branches in integer programs.
Data locality characteristics however exhibit
a slightly different trend. It can be seen that
data locality has been getting worse over
time (with the exception of a few outliers).
The paper has also run a similarity analysis
across all the SPEC benchmark suites, and
the optimum number of clusters was deter-
mined to be 12. Lastly, the paper finds that
CPU 2000 is the most diverse among the all
the SPEC suites that have surfaced.

3 Evaluation

In this literature survey, we analyzed some
of the recent papers that describe techniques
for reduction of simulation time. We chose
papers that advocated the use of statistical
or profile driven simulation to reduce the
simulation time. All these papers, except
[14], described and evaluated a different
methodology to pick the samples. The ideas,
overlapping in some instances, provide a
good overview of benchmark sampling. The
ideas described in these papers were innova-
tive and can provide a good lead for anyone
planning to start research in this area. Each
of the papers had their individual strengths
and weaknesses which we will discuss in the
paragraphs to follow.

The paper “Characterizing and Comparing
Prevailing Simulation Techniques” does an
excellent job of choosing characterization
methodologies. The methodologies cover a
wide range of program behaviors. In ad-
dition, each methodology is described in
great detail making it easier for the reader
to understand the experimental techniques.
However, the paper does not provide the
details of the experimental setup adequately.
For example, the paper speaks of 43 pro-
cessor and memory parameters, but does not
provide a list of these parameters that were
used in PB design. Such a list could have
added more value to the results presented.
The paper actually refers to [15] for a de-

scription of these parameters, but even there,
no such listing can be found.

The results provided by the author are
intuitive to the reader and similar to those
provided in other related literature. For in-
stance, the reduced input technique evaluated
using the Processor Bottleneck Characteriza-
tion rendered the same conclusion stated in
[7]. This ensures validity of results. Overall
this paper was of value to literature in this
subject and served as an ideal overview for
this survey.

The paper from Wunderlich er al. on
SMARTS was a strong paper and it pro-
vided not only experimental results but also
provided analytical explanations for these
results. The reason that makes SMARTS
a powerful technique is its ability to esti-
mate the representativeness of the selected
samples. In addition, SMARTS provides the
ability to adjust the accuracy versus speed-
up trade-off before the simulation is run, by
altering the sampling unit size and sampling
frequency. This flexibility is not offered by
their competitor SimPoint. Results from [14]
state that SMARTS outperformed SimPoint
in terms of accuracy, but had a greater
simulation time. This was due to the fact
that SMARTS requires detailed execution of
more instructions.

The main drawback of SMARTS is the
cold start problem that arises due to short
sample unit size and leads to the need for
warm-up. Another disadvantage, also related
to warm-up, is that all simulators running
SMARTS need to support both functional
and detailed simulation. This special need
limits the scope of this technique. How-
ever, SMARTS is a very powerful technique
which, according to [14], should be the
choice of any architect who is most con-
cerned about accuracy rather than simulation
speed.

The paper from Sherwood et al. titled
“Automatically Characterizing Large Scale
Program Behavior” provided a description
of SimPoint. The paper does an excellent
job of explaining the concepts as well as the

methodology at work in the SimPoint tool.
Even though some of the mathematical con-
cepts in the paper were hard to convey, the
explanations were still clear. Some of the fig-
ures in the paper were hard to comprehend,
even in the presence of descriptions. Overall,
SimPoint is a powerful idea and the use of
basic block vectors with SimPoint is also
clever. SimPoint performs well in achieving
accurate numbers for IPC for most of the
SPEC benchmarks but it does not perform
well for memory intensive benchmarks like
mcf, leaving room for improvement in the
area of strategic sampling.

“Structures for Phase Classification,” also
from Sherwood et al., furthers the ideas from
the SimPoint paper by trying other alterna-
tives in place of Basic Block Vectors. The
text was clear and easy to understand. The
paper has an important value as it increased
the number of options for researchers to in-
vestigate. An important conclusion was that
register usage can be tracked instead of basic
blocks to achieve a similar level of accuracy.
Since there are a limited number of registers,
this data is easier to collect and manage.
Some of these other metrics presented in this
paper may also help overcome the deficiency
of SimPoint in estimating performance for
memory intensive workloads.

The paper presented by Lafage and Seznec
provides an alternative to SimPoint for
strategic sampling. This paper uses data
stream characteristics instead of instruction
stream to perform phase classification. It
uses a hierarchical clustering algorithm and
uses data related metrics, which makes this
paper different from other papers in this sur-
vey. The idea is to use temporal and spatial
locality as a metric for profiling benchmarks.
The authors did not do a satisfactory job at
describing the method they used to compute
these complex metrics. There is even a math-
ematical error in §4.1.3 of the paper which
creates further confusion. The paper could
have been a more significant contribution if
the concepts had been explained better. The
paper also provides an indicator of represen-

tativeness which SimPoint did not, making
this paper a novel contribution. The ideas in
this paper can be applied to future research
in generating more representative samples.

The paper from Phansalkar et al. is an
important contribution to the subject. The
most significant contribution of this paper,
which can lead to further research ideas in
the field of strategic sampling, is the identi-
fication of 29 microarchitecture independent
metrics. Although the idea is not presented
in this paper, a subset of these metrics can
be used instead of Basic Block Vectors as
input to a tool like SimPoint. The paper also
provides reference to [9] where they not only
provide the list of these 29 metrics but also a
table where the values for these metrics have
all been computed for programs from SPEC
2000 and former SPEC suites. Overall, this
paper is easy to read and comprehend, and
provides some important insights concerning
the SPEC benchmark suites.

4 Conclusion

This literature survey discusses papers re-
lated to the sampling of benchmarks. We
provide a summary of six papers underlining
the key concepts and contributions of each
paper. We also provided our evaluation of
these papers. The following important con-
clusions can be drawn from this survey and
used in research related to this field.

1) Sampling is the most practical tech-
nique to reduce simulation time, yet
still maintain accuracy

2) Statistical sampling, although more ac-
curate, has more serious issues related
to execution time and warm-up

3) Strategic sampling can lead to promis-
ing results, but the results can be more
or less representative based on the met-
rics used to select the samples

4) There is still room from improvement
in the area of statistical and strategic
sampling

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

(15]

Simpoint. http://www.cs.ucsd.edu/calder/simpoint/,
March 2005.

Thierry Lafage and Andre; Seznec. Choosing repre-
sentative slices of program execution for microarchi-
tecture simulations: a preliminary application to the
data stream. pages 145-163, 2001.

Jeremy Lau, Stefan Schoenmackers, and Brad Calder.
Structures for phase classification. In Proceedings of
the IEEE International Symposium on Performance
Analysis of Systems and Software. IEEE Computer
Society, 2004.

I. C. Lerman. Foundations of the likelihood linkage
analysis (iia) classification method. Applied Stochastic
Models and Data Analysis, pages 7:63-76, 1991.

I. C. Lerman. Likelihood linkage analysis (lia)
classification method: An example treated by hand.
Biochimie, 1993.

J. MacQueen. Some methods for classification and
analysis of multivariate data. in 5th berkeley sympo-
sium. volume 1, pages 281-297, 1967.

A.J. Klein Osowski and David J. Lilja. Minnespec: A
new spec benchmark workload for simulation-based
computer architecture research. Computer Architec-
ture Letters, 1, 2002.

Dan Pelleg and Andrew Moore. X-means: Extending
K-means with efficient estimation of the number of
clusters. In Proc. 17th International Conf. on Machine
Learning, pages 727-734. Morgan Kaufmann, San
Francisco, CA, 2000.

A. Phalsanker, A. Joshi, L. Eeckhout, and L. John.
Measuring program similarity. Technical Report TR-
050127-01, The University of Texas at Austin, 2005.
A. Phansalkar, A. Joshi, L. Eeckhout, and John
L. Measuring program similarity: Experiements with
spec cpu benchmark suites.

Timothy Sherwood, Erez Perelman, and Brad Calder.
Basic block distribution analysis to find periodic
behavior and simulation points in applications. In
PACT °01: Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation
Techniques, pages 3-14. IEEE Computer Society,
2001.

Timothy Sherwood, Erez Perelman, Greg Hamerly,
and Brad Calder. Automatically characterizing large
scale program behavior. In ASPLOS, pages 45-57,
2002.

Roland E. Wunderlich, Thomas F. Wenisch, Babak
Falsafi, and James C. Hoe. Smarts: accelerating
microarchitecture simulation via rigorous statistical
sampling. In ISCA ’03: Proceedings of the 30th
annual international symposium on Computer archi-
tecture, pages 84-97. ACM Press, 2003.

Joshua J. Yi, Sreekumar V. Kodakara, Resit Sendag,
David J. Lilja, and Douglas M. Hawkins. Characteriz-
ing and comparing prevailing simulation techniques.
Laboratory for Advanced Research in Computing
Technology and Compilers, February 2005.

Joshua J. Yi and David J. Lilja. Improving proces-
sor performance by simplifying and bypassing trivial
computations. In ICCD, pages 462—, 2002.

