
Evaluation of SimPoint for Specific
Architectural Studies

Veynu Narasiman
narasima@ece.utexas.edu

Aater Suleman
suleman@ece.utexas.edu

Abstract—
Computer architects often times run simulations to

test the impact their particular architectural enhance-
ments may have on performance. However, the increas-
ing complexity of modern microprocessors coupled with
the emergence of longer benchmark applications has
dramatically increased the time it takes to run such
simulations. Therefore, much research has been done
attempting to find ways to reduce this simulation time.
SimPoint is a tool that selects representative samples
from a benchmark. Only simulating these samples will
significantly reduce the total simulation time. However,
it is imperative that there be little compromise in
accuracy for the results obtained using SimPoint.

Our goal is to evaluate the effectiveness of SimPoint
with respect to two specific architectural studies -
prefetching and branch prediction. For prefetching, we
want to see if SimPoint can accurately capture the
actual relative performance improvement obtained from
prefetching. For branch prediction, we want to see if
SimPoint can be used to identify individual branches
that exhibit a specific type of behavior.

Our results show that SimPoint was unable to ac-
curately capture the relative improvement in hit ratio
due to prefetching. Likewise, SimPoint was also unable
to capture the individual phase behavior exhibited by
certain branches. Therefore, we conclude that SimPoint
is not an appropriate tool to be used for these particular
architectural studies.

1 Introduction

In order to gauge the potential impact a particular
architectural enhancement may have on performance,
computer architects have to perform detailed simula-
tions. The increasing complexity of modern micro-
processors and the emergence of larger and larger
benchmark applications has drastically increased the
time it takes to run such simulations. Therefore,
there is a definite need to reduce this simulation
time. SimPoint [1] is a popular tool that attempts to
alleviate this problem.

SimPoint selects the most representative samples
from a benchmark application. Only these samples are
simulated in detail, instead of the entire benchmark,
resulting in a significantly shorter simulation time.
However, it is imperative that the results obtained us-
ing SimPoint are still accurate. Otherwise, the results
of an experiment performed using SimPoint could not
be trusted.

In this project, we are interested in evaluating
the accuracy of SimPoint for two particular archi-
tectural studies - prefetching and branch prediction.
Specifically, we want to see if SimPoint can accu-
rately capture the performance improvement obtained
from cache prefetching. Secondly, we want to see if
SimPoint can accurately identify individual branches
within a program that exhibit a certain kind of phase
behavior.

2 Background and Motivation
In this section, we will provide some background

information on how SimPoint operates. In addition,
we will present some of the key results from previous
work that is related to our project.

2.1 SimPoint
Using Basic Block Vectors combined with cluster-

ing, SimPoint attempts to identify similar intervals
within a large application and strategically chooses
sample intervals that are highly representative of
the entire program. Only simulating these sample
intervals instead of the entire program greatly reduces
the total simulation time.

SimPoint first divides an entire program into fixed
length intervals also known as slices (for example,
100-million instructions per interval). It then pro-
files the entire program, gathering the Basic Block
execution behavior during each interval. SimPoint
then compares the Basic Block execution behavior of
each interval and groups similar intervals into clusters
using a K-means clustering algorithm. This is an
iterative process whose end result is the grouping
of each interval into one of the K clusters. One
representative from each cluster is then chosen with
an accompanied weight based on the total number
of members in that cluster. These are the samples
that SimPoint reports as the most representative of the
entire program. This is only a very basic description
of how SimPoint operates. More detailed information
can be found in [10] or at SimPoint’s webpage at [1].

2.2 Related Work
Calder et al. in [10] performed an experiment

where the actual IPC of a benchmark (obtained
from complete simulation) was compared to the IPC

calculated using information from only the intervals
SimPoint selected. They showed that the estimated
IPC (obtained using SimPoint) was within three
percent of the actual IPC, and thus concluded that
SimPoint models actual performance fairly accurately.
However, in another paper from the same authors, [9],
several other metrics (in addition to IPC) are com-
pared to determine SimPoint’s accuracy. The results
showed that SimPoint was able to accurately estimate
certain metrics, such as overall branch prediction
accuracy, but poorly estimated others such as data
cache miss rate. This suggests that SimPoint may not
be appropriate for certain architectural studies.

A recent paper from Hawkins et al., [11], evalu-
ates the effectiveness of various sampling techniques
including SimPoint. This paper uses five different
criteria to compare these sampling techniques. The
important result here is that sampling the benchmark
proved to be the best technique for reducing the
length of a benchmark for detailed execution while
still maintaining accurate results.

The above studies evaluated SimPoint’s ability to
estimate overall performance, but do not target any
specific architectural studies like we are proposing
to do. Specifically, we have not seen any literature
that evaluates SimPoint’s ability to capture the actual
performance improvement of prefetching, nor have
we seen any studies relating to SimPoint’s ability to
identify individual branches that exhibit a certain kind
of phase behavior.

3 Motivation
Hawkins et al. in [11] declare that several architects

are hesitant to use SimPoint for their experiments
because they are unsure about whether or not it will
yield accurate results. From this project, we hope to
either validate or invalidate the use of SimPoint for
studies relating to prefetching and particular branch
prediction studies.

Architects are constantly inventing new prefetching
algorithms, and experiments are being performed to
test their impact on performance. If we show that
SimPoint can accurately capture the performance im-
provement of prefetching, then in the future, those
performing prefetching studies would be able to confi-
dently use SimPoint thereby expediting their research.
On the other hand, if we show that SimPoint cannot
accurately capture the improvement, researchers in
this field will know that they cannot use SimPoint
for their studies and will have to rely on complete
simulation or some other alternative to reduce the
simulation time.

Architects are also performing research on how to
handle branches whose prediction accuracy exhibits
a certain kind of phase behavior. For example, in-

dividual branches that have a very high prediction
accuracy during some intervals (easy to predict), but
also have a low prediction accuracy during other
intervals (hard to predict) are particularly interesting.
Special optimizations can be made on such branches
to reduce the total number of branch mispredictions.
The first step for this kind of research is to identify
branches that actually exhibit this kind of special
behavior. In this project we will test whether or not
SimPoint can be used to identify these branches. If
so, future studies in this field can be performed using
SimPoint, once again expediting the research process.

4 Methodology
We decided to use the SPEC 2000 benchmark suite

with reference inputs for our analysis. In order to eval-
uate SimPoint’s accuracy, we must first measure the
actual statistics obtained from complete simulation of
the entire benchmark and compare these with the esti-
mated version obtained using SimPoint. We used the
SPEC 2000 benchmark with reference inputs because
we believe that they are the most representative of
real world applications. However, a drawback of using
the reference input set is very long simulation times,
especially if simulating a benchmark in its entirety.
Therefore, instead of using a simulator such as Simple
Scalar, we decided to use an instrumentation tool for
x86 architectures known as PIN [8] to collect the data.

4.1 Prefetching
We created a cache simulator that interfaced with

the PIN framework and recorded the total number of
cache hits and misses. We simulated a 32 KB L1-
cache, and a 1 MB L2-cache with a block size of
32 bytes and an associativity of 32. The replacement
policy was round robin. We implemented a simple
stream prefetcher similar to the one implemented on
the PowerPC [6] for the L2-cache only. We created
the prefetcher in such a way that it could be easily
enabled or disabled so that we could measure the
relevant cache statistics both with and without a
prefetcher. We recorded the number of cache hits and
misses for the L2-cache only.

In order to measure the statistics for each interval in
the benchmark, we added a special instruction counter
so that we could differentiate between intervals. We
assumed a slice size of 100-million instructions.
Whenever the counter reached 100-million, we reset
it back to zero and noted that a new slice was about to
begin. In this manner, we recorded the total number
of hits and misses that occurred in each slice of
the program. An excerpt of this raw data can be
found in Appendix I. Summing the data from all of
the slices gives us the actual hit ratio. We wrote a
Perl script that parsed the data and computed this

2

hit ratio for us (a list of all the scripts that we
wrote for this project can be found in Appendix
III). We first calculated the actual hit ratio obtained
with the prefetcher disabled, and then repeated the
process with the prefetcher enabled. We compared
these two numbers and calculated the actual relative
improvement in cache hit ratio due to prefetching. We
repeated this entire process for several benchmarks in
the SPEC 2000 suite.

Since we had already recorded the hit and miss
statistics for every slice within the entire program,
we had all the data that we needed to calculate the
SimPoint estimated version of the cache hit ratio.
We simply calculated the cache hit ratio for each
slice number that SimPoint reported, then took the
weighted average of these hit ratios using the weights
SimPoint reported. Once again, we wrote a Perl script
that parsed the data and computed these values for
us. We did this for both cases (with and without the
prefetcher). Then, just as before, we compared these
two hit ratios and calculated the relative improvement
in cache hit ratio. This new number is the relative
improvement estimated using SimPoint. Just as be-
fore, we repeated this procedure for several of the
benchmarks in the SPEC 2000 suite.

Lastly, we compared the actual improvement in hit
ratio to the SimPoint estimated improvement for each
benchmark. The results we obtained are reported later
in the results section.

4.2 Branch Prediction
For the branch prediction information we first had

to create a branch predictor simulator. We imple-
mented a G-SHARE branch predictor with an 8-KB
Pattern History Table that interfaced with the PIN
framework. In order to find individual phase behavior,
we needed to record the branch prediction accuracy
during every interval within the program for every
static branch in the program. We accomplished this
by implementing a hash table that used the Program
Counter (PC) of the branch instruction as the key and
inserted prediction statistics for each branch. Just as
in the prefetching case, we added in an instruction
counter and whenever it reached 100-million (the size
of a slice), we noted that a new slice was about to
begin. In this manner, we recorded the number of
correct predictions and mispredictions for every static
branch in the entire program for every interval within
the program. An excerpt of the raw data obtained
using this procedure can be found in Appendix II.
We repeated this process for several of the SPEC
2000 benchmark programs. This process resulted in
an incredibly large amount of data (certain raw data
text files were greater than 500 MB in size). The
next step was to search through this data and create
meaningful statistics for our experiment.

In order to verify our methodologies, we first
wanted to calculate the overall branch prediction
accuracy obtained from complete simulation of a
benchmark, and also compute the estimated overall
branch prediction accuracy using SimPoint. As men-
tioned before in the related work section, previous
studies very similar to this have been done before.
We thought it would be a good idea to validate our
results with their results before we began studying the
individual phase behavior of the branches. Since we
had recorded the total number of correct predictions
and mispredictions for each static branch in the pro-
gram during every interval, we simply had to sum this
data over all branches, and then over all intervals to
come with the overall branch prediction accuracy. We
wrote a Perl script that automatically calculated this
actual overall branch prediction accuracy for us. We
repeated this process for several of the benchmarks
in the SPEC 2000 suite.

For the SimPoint estimated version, we first calcu-
lated the overall branch prediction accuracy for only
those intervals that SimPoint reported and then took
the weighted average of those prediction accuracies
according to the weights SimPoint reported. Once
again, we wrote another Perl script that parsed the
data, and calculated these values for us. Just as before,
we repeated this process for several benchmarks in the
SPEC 2000 suite.

Now that we had the actual overall branch predic-
tion accuracies and the SimPoint estimated versions
for each benchmark, we could make comparisons to
see how well SimPoint did. Furthermore, we per-
formed a “before and after” comparison test to deter-
mine whether or not the difference between the actual
overall branch prediction accuracy and the SimPoint
estimated accuracy was statistically significant. Our
results are reported later in the results section. Before
continuing, we verified that our results matched the
results of Calder et al. in [9].

After validating our branch prediction methodol-
ogy, we could now continue with our individual
branch phase behavior study. The next step was to
identify only those branches that exhibited the special
kind of phase behavior we were interested in. Specif-
ically, we wanted to identify branches that had a high
branch prediction accuracy for some intervals (greater
than 95%), but also had a low prediction accuracy
(anything less than 90%) for other intervals.

Since we had recorded the branch prediction statis-
tics for every static branch during each interval, we
simply found the mean and standard deviation of the
branch prediction accuracies across all intervals for
each static branch. We only selected those branches
that had a mean above 75% and a standard deviation
above 3%. Branches that met these criteria displayed

3

the type of behavior we were looking for. The num-
bers we chose (75% and 3%) were selected by an
iterative process starting with some initial guesses
and then graphically viewing the branches that were
selected, and changing the numbers accordingly. The
final requirements (mean > 75% and stdev > 3%)
resulted in a selection of branches that definitely
exhibited the phase behavior we were looking for,
except for a few cases where there were one or two
outliers that severely skewed the standard deviation
and thus the branch met the criteria but did not
really display the type of phase behavior we were
looking for. We eliminated such branches by adding
a third requirement. We measured the percent of data
points that lied above the mean and made sure this
number was between 20% and 80%. This eliminated
those branches that met the previous two requirements
only because their mean and standard deviation were
skewed by a few outliers. We again wrote Perl scripts
that parsed the raw data, did the necessary calcula-
tions, and reported these results.

One important note to make is that for any given
branch, there were slices where the total number of
times that branch was executed was quite low. This
could result in a very skewed prediction accuracy
for that interval. For example, if a branch was only
accessed twice within a given interval and predicted
correctly once, but mispredicted the other time, that
would result in a 50% prediction accuracy for that in-
terval. This 50% accuracy could dramatically change
the overall mean and standard deviation over all
intervals, thereby falsely selecting this branch. To
prevent this from happening, prediction accuracies
calculated for intervals where there were less than
1000 accesses to a particular branch were ignored
and not used when calculating the mean and standard
deviation for that branch.

The procedure described above identified several
static branches within each of the SPEC benchmarks
that displayed the type of phase behavior we were
looking for. To see if SimPoint could also identify
these branches, we simply took the branch prediction
accuracies of each branch from only those intervals
that SimPoint reported and once again calculated the
mean and standard deviation. We used the same cri-
teria as before (mean > 75%, and standard deviation
> 3%) to identify the branches we were interested
in. This was all done using new Perl scripts. Lastly,
to test how SimPoint did, we compared the number
of branches SimPoint identified to the number of
branches actually identified. Our results are reported
in the next section.

5 Results
In this section we will discuss the results of our

experiments. In addition we will also attempt to
provide explanations for the results.

5.1 Prefetching Results
We first ran all SPEC INT and SPEC FP bench-

marks using our tool and gathered the relavant data.
The results obtained can be seen in Table I on
the following page. Table I illustrates a comparison
between the L2-cache hit ratio actually observed from
the complete simulation of the benchmark, and the
hit ratio that was estimated using SimPoint. The first
nine rows show the data obtained from the SPEC INT
benchmarks. The last row is the data from the only
SPEC FP benchmark we were able to run successfully
to completion in the short amount of time we had
for this project. It can be seen that the difference
between the actual hit ratio and SimPoint hit ratio
is less that 1% in the case of eon, vpr, gzip, crafty,
and perlbmk. The difference is close to 5% or less in
the case of vortex and gcc. However, the difference
is substantially higher in the case of gap, bzip2, and
equake. On careful observation, it can be seen that
the main difference between these three benchmarks
and the other benchmarks is the noticeably low cache
hit ratio. The actual cache hit ratio is 61% in case of
bzip2, 17.83% in case of gap, and 4.78% in case of
equake, whereas most of the other benchmarks have
hit ratios higher than 90%. This suggests that a strong
correlation exists between the cache hit ratio for a
program and the difference between the actual hit
ratio and the SimPoint estimated hit ratio. Therefore,
it can be concluded that SimPoint does not estimate
the cache behavior very accurately for programs that
result in a poor cache performance.

Table II on the next page is similar to Table I
except that Table II shows the results obtained when
the cache tool was used with the stream prefetcher
enabled. We will first look at the Actual-HR column.
If we compare these hit ratios from Table II to
the actual hit ratios recorded in Table I, we will
see that the hit ratio has increased in the case of
most benchmarks due to prefetching. It can also be
seen that this increase in hit ratio is most visible
in the benchmarks that had lower hit ratios without
the prefetcher. Some noticeable improvements are:
gap (from 17.83% to 51.55%), bzip2 (from 60.93%

to 67.20%), and equake (from 4.79% to 27.03%).
The reason for this behavior is because prefetchers
tend to perform better on programs that are more
memory intensive compared to programs that put less
pressure on the memory system. These improvements
are similar to the results seen in the literature [5].
Now if we compare the actual hit ratio with the

4

TABLE I

COMPARISON OF ACTUAL AND SIMPOINT ESTIMATED HIT RATIO (HR) WITHOUT PREFETCHER

Benchmark Slices Sim-HR Actual-HR Percent Difference
gap 00 2268 10.006093 17.839695 -43.911075

vortex 00 1013 82.260692 85.649938 -3.957091
gcc 00 199 71.988477 76.043075 -5.331976
eon 00 3683 99.980576 99.933566 0.047041
vpr 00 1094 95.312556 95.363824 -0.053760

bzip2 00 208 46.622580 60.935978 -23.489239
gzip 00 541 99.260283 99.668525 -0.409599

crafty 00 2155 99.162037 99.138497 0.023745
perlbmk 00 329 94.377155 94.870957 -0.520499

equake 00 1510 5.570253 4.787959 16.338784

TABLE II

COMPARISON OF ACTUAL AND SIMPOINT ESTIMATED HIT RATIO WITH PREFETCHER

Benchmark Slices Sim-HR Actual-HR Percent Difference
gap 00 2268 16.285250 51.553131 -68.410745

vortex 00 1013 83.577690 86.565478 -3.451477
gcc 00 199 74.841063 77.955966 -3.995721
eon 00 3683 99.980577 99.937977 0.042627
vpr 00 1094 94.174617 94.203570 -0.030735

bzip2 00 208 59.349353 67.208511 -11.693695
gzip 00 541 99.686524 99.828241 -0.141961

crafty 00 2155 98.775854 98.751424 0.024738
perlbmk 00 329 95.036322 95.543706 -0.531048

equake 00 1510 21.949688 27.034940 -18.809925

TABLE III

COMPARISON OF ACTUAL AND SIMPOINT ESTIMATED IMPROVEMENT DUE TO PREFETCHING

Benchmark Slices Sim-Impr Actual-Impr Difference
gap 00 2268 62.753328 188.979882 -126.226554

vortex 00 1013 1.601005 1.068932 0.532074
gcc 00 199 3.962560 2.515536 1.447024
eon 00 3683 0.000001 0.004414 -0.004413
vpr 00 1094 -1.193903 -1.216660 0.022757

bzip2 00 208 27.297444 10.293645 17.003799
gzip 00 541 0.429417 0.160247 0.269170

crafty 00 2155 -0.389447 -0.390436 0.000990
perlbmk 00 329 0.698439 0.709119 -0.010680

equake 00 1510 294.051886 464.644356 -170.592470

estimated SimPoint hit ratio, it can be seen that the
accuracy of the SimPoint estimated hit ratio varies
accross benchmarks just as in Table I. The difference
between the actual hit ratio and SimPoint estimated
hit ratio is significantly higher for gap, bzip2, and
equake (similar to Table I).

Data in Table I and Table II was used to compute
Table III. The Actual-Impr column lists the relative
improvement in cache hit ratio due to prefetching ob-
tained from complete simulation of the entire bench-
mark. The Sim-Impr column lists the relative im-
provement estimated using SimPoint. The Difference
column in Table III is simply the difference between
the two relative improvements (Sim-Impr - Actual-
Impr). In the case of most benchmarks, the difference
in the improvement is less than or very close to 1%.
These benchmarks (where the difference is low) are

known to be the non-memory intensive benchmarks.
This implies that SimPoint can accurately estimate the
relative improvement due to a prefetcher for the non-
memory intensive programs but the same cannot be
said about the memory intensive benchmarks (gap,
bzip2, and equake). The difference in improvement
for each of these benchmarks suggests that SimPoint
performs very poorly on estimating the relative per-
formance improvement of memory intensive bench-
marks and therefore SimPoint should not be used for
research related to prefetching.

Based on our results, we decided to further study
these benchmarks in order to explain this poor accu-
racy of SimPoint. Figure 1 on the next page shows the
number of cache misses observed during each 100-
million instruction slice of bzip2. On the x-axis we
have the slice numbers and on the y-axis we see the

5

Fig. 1. Number of cache misses in every slice of bzip without prefetcher, with prefetcher, and the SimPoints

TABLE IV

COMPARISON OF ACTUAL AND SIMPOINT ESTIMATED OVERALL BRANCH PREDICTION ACCURACY

Benchmark Slices Sim-BPA Real-BPA Percent Difference
gap 00 2266 97.439887 95.559914 1.967324
mcf 00 514 93.314229 93.508401 -0.207651
gcc 00 199 96.919811 97.319026 -0.410213
vpr 00 1094 89.130415 89.088314 0.047257

bzip2 00 208 92.977164 91.578189 1.527629
gzip 00 541 93.004881 93.549842 -0.582536

crafty 00 2152 87.797056 87.953863 -0.178284
perlbmk 00 329 94.942455 94.680599 0.276568

galgel 00 3615 98.199102 97.800976 0.407078
fma3d 00 3673 94.050250 95.799894 -1.826353
equake 00 1510 82.046102 82.048140 -0.002484

apsi 00 4580 96.592628 92.585496 4.328034
mesa 00 2867 93.345454 93.445023 -0.106553
lucas 00 2479 95.441976 90.849094 5.055506

facerec 00 3438 90.884490 91.437499 -0.604794
swim 00 2237 99.889948 99.893738 -0.003794

art 00 1076 95.401496 95.472843 -0.074730
applu 00 3873 80.922845 78.618597 2.930919
mgrid 00 4819 99.222424 98.767044 0.461065
ammp 00 3921 97.091106 96.438017 0.677211

6

number of cache misses in each slice. The two lines
show the number of cache misses with and without
the prefetcher. It can be seen that the number of
misses with the prefetcher are much lower compared
to the number of misses without the prefetcher when
the total number of misses is very high. On the other
hand, the number of misses with and without the
prefetcher are approximately the same in the slices
where the total number of misses is very low. The
X markers on the graph indicate the points that were
chosen by SimPoint and were used to estimate the
cache hit ratio. It can be noticed that most of the
points appear to be in the upper half of the graph (the
slices with very high number of misses) and therefore
SimPoint severely overestimates the reduction in the
number of misses due to the prefetcher. We believe
that using more SimPoint slices or a different criteria
(such as suggested in [4]) instead of the Basic Block
Vectors [10] may be more effective in the case of
these memory intensive benchmarks.

5.2 Branch Prediction Results
5.2.1 Overall Branch Prediction Accuracy

Table IV on the preceding page lists the actual
overall branch prediction accuracy (obtained from
simulation of the entire benchmark) as well as the
SimPoint estimated branch prediction accuracy for
several of the SPEC 2000 benchmark applications.
The top half of the table summarizes the results for
eight of the SPEC INT benchmarks, and the bottom
half contains the results for twelve benchmarks from
the SPEC FP suite. In the last column, the difference
between the actual and SimPoint estimated branch
prediction accuracies is calculated. As you can see,
for most of the benchmarks (14 out of the 20), the
difference between the SimPoint estimated prediction
accuracy and the actual prediction accuracy is less
than one percent. This suggests that SimPoint does
a pretty good job of predicting the overall branch
prediction accuracy. The two worst cases were both
floating point benchmarks (lucas and aspi) where the
difference rose to as high as five percent.

To make a stronger claim about SimPoints ability
to estimate the overall branch prediction accuracy, we
conducted a “before and after” significance test to
determine whether or not the difference between the
actual and SimPoint estimated branch prediction ac-
curacies was statistically significant. Taking the mean
and standard deviation of the differences column in
Table IV, we computed the 95% confidence interval
to be [-0.11, 1.48]. Since this interval contains zero,
we can conclude that the difference is not statistically
significant. This further attests that SimPoint does a
good job of estimating the overall branch prediction
accuracy.

As mentioned in the methodologies section, the
reason we performed this experiment was so that we
could compare our results with some previously done
related work. Calder et al. in [9] performed a similar
experiment to the one we did above and reached the
same conclusion that we made. Specifically, their re-
sults also showed that most of the time, the estimated
branch prediction accuracy obtained using SimPoint
was able to come within one percent of the actual
branch prediction accuracy obtained from complete
simulation of the benchmark. Since our results closely
matched other previous results, we were confident that
our methodologies were correct and were ready to
perform the branch phase behavior experiments.

5.2.2 Individual Branch Phase Behavior Results

Figure 2 on the next page graphically illustrates
some of the branches that were identified that exhib-
ited the type of phase behavior we were interested
in. The top two graphs are from bzip, the middle
two from vpr, and the bottom two are from gap.
The x-axis on the graphs corresponds to the slice
or interval number, and the y-axis is the branch
prediction accuracy during that particular interval. All
of these branches had several intervals where the
prediction accuracy was very high (greater than 95%)
but also had several intervals where the prediction
accuracy was low (less than 90%). Sometimes the
variation was sporadic changing dramatically between
consecutive intervals (bzip). On the other hand there
were also branches such as those from vpr where the
accuracy remained fairly constant for a while and then
suddenly changed.

Table V on page 9 shows the results of the in-
dividual branch phase behavior experiments that we
conducted. The top half of the table lists the results for
eight benchmarks from SPEC INT 2000, and the latter
half contains the results of twelve benchmarks from
SPEC FP 2000. The middle column lists the actual
number of static branches identified that exhibited
the specific type of phase behavior we were looking
for. The last column shows the number of branches
identified when SimPoint was used.

The results from the SPEC FP benchmarks were
not that meaningful. As you can see, for more than
half of them the number of branches actually iden-
tified was too small for any evaluation of SimPoint
to be done. For the remaining benchmarks, the data
shows that SimPoint was only able to identify a small
subset of the actually identified branches. The worst
case was galgel, where SimPoint was not even able
to identify a single one of the 20 actually identified
branches.

The SPEC INT benchmarks however provided bet-
ter results. As you can see, for most of the bench-
marks, SimPoint only identified a very small percent-

7

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100 120 140 160 180

P
re

di
ct

io
n

A
cc

ur
ac

y

Slice Number

 bzip2_00 Individual Branch Prediction Accuracy

Branch Number 2

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100 120 140 160 180

P
re

di
ct

io
n

A
cc

ur
ac

y

Slice Number

 bzip2_00 Individual Branch Prediction Accuracy

Branch Number 2

(a) Two branches from bzip that show phase behavior

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200

P
re

di
ct

io
n

A
cc

ur
ac

y

Slice Number

 vpr_00 Individual Branch Prediction Accuracy

Branch Number 1

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200

P
re

di
ct

io
n

A
cc

ur
ac

y

Slice Number

 vpr_00 Individual Branch Prediction Accuracy

Branch Number 11

(b) Two branches from vpr that show phase behavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

P
re

di
ct

io
n

A
cc

ur
ac

y

Slice Number

 gap_00 Individual Branch Prediction Accuracy

Branch Number 7

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1840 1860 1880 1900 1920 1940 1960 1980 2000

P
re

di
ct

io
n

A
cc

ur
ac

y

Slice Number

 gap_00 Individual Branch Prediction Accuracy

Branch Number 20

(c) Two branches from gap that show phase behavior

Fig. 2. Examples of branches identified by our criteria

8

TABLE V

COMPARISON OF THE NUMBER OF BRANCHES ACTUALLY IDENTIFIED AND THE NUMBER SIMPOINT IDENTIFIED

Benchmark Actual SimPoint
bzip2 00 24 9
gcc 00 468 49
gzip 00 23 9
mcf 00 32 6

perlbmk 00 75 1
vpr 00 15 15

crafty 00 493 302
gap 00 167 6

ammp 00 29 18
applu 00 0 0
apsi 00 0 0
art 00 1 1

equake 00 3 0
facerec 00 0 0
fma3d 00 47 17
galgel 00 20 0
lucas 00 0 0
mesa 00 5 3
mgrid 00 0 0
swim 00 0 0

age of the branches that were actually identified. The
exceptions were crafty and vpr. For crafty, out of the
493 branches actually identified, SimPoint identified
302 of them (about 61%). For vpr, SimPoint was able
to identify all 15 of the branches that were actually
identified. However, for the remaining benchmarks,
SimPoint performed rather poorly. The worst case was
for perlbmk where SimPoint only identified 1 out of
the 75 actually identified branches.

This data suggests that SimPoint cannot capture
specific phase behavior of individual branches within
a program. We believe that the fundamental reason
for this is that in order to capture variation, many
data points are needed, and although SimPoint tries
to accurately capture the most representative samples
from a program, the number of data points reported
is not enough to capture phase behavior very well.

6 Future Work
Our interest in this research has increased substan-

tially as we have made progress on this project. We
plan to further investigate our conclusions derived
from the study of prefetching as well as branch
prediction. We will discuss our specific plans in the
following sub-sections.

6.1 Prefetching
In the prefetching area, we first want to validate our

setup and tools in a greater detail because we feel that
a completely validated system is pivotal for further
research. We plan to accomplish this by running
SPEC CPU 2000 benchmarks on an x86 simulator
that is confidently used by many researchers. This
process will require a lot of time hence we have not

been able to perform this task so far. Once we validate
the setup, the next task will be to expand our model
from a cache simulator to a complete timing model
of a super scalar processor so we can compute IPC,
and make a stronger claim regarding the validity of
SimPoint. We also need to run more benchmarks. For
this report, we were able to run 9 out of 12 SPEC
INT benchmarks and only 1 out of 14 SPEC FP
benchmarks. Our claim from the results so far is that
SimPoint does not estimate the improvement due to a
hardware prefetcher accurately for memory intensive
benchmarks, but to establish this claim we may have
to run similar analysis on other benchmarks which
are known to be more memory intensive compared
to SPEC CPU 2000 benchmarks. These results, once
validated, can be used in the future as a guideline
for computer architects doing research in the field
of prefetching. The conclusion may also be useful
in enhancing the performance of tools similar to
SimPoint.

6.2 Branch Prediction

The study of individual branch behavior has pro-
vided us multiple directions in which further research
can be conducted. We believe that studying the be-
havior of individual branches can lead to improved
branch predictors or compiler mechanisms that may
improve overall branch prediction accuracy. Some of
the ideas we plan to explore are listed below:

1) Track the branches that show phase behavior
back to the source code level and try to un-
derstand the reason for such behavior and its
dependence on the input data, ISA, and the
branch predictor.

9

2) Try different criteria for selecting branches with
phase behavior and try to find the best cri-
teria for identifying such branches using the
complete reference input set and just using
SimPoint.

3) Conduct a similar study for other code reduc-
tion techniques like minneSpec [7], truncation,
etc. (a study similar to the one presented in [11]
but with different criteria).

7 Conclusion
In this project, we evaluated the effectiveness of

using SimPoint for two particular architectural stud-
ies, prefetching and branch prediction. For prefetch-
ing, we wanted to see if SimPoint could accurately
captured the actual relative performance improvement
obtained from prefetching. For branch prediction, we
wanted to see if SimPoint could be used to identify
individual branches that exhibited a specific type of
behavior.

We concluded that SimPoint was able to capture the
relative improvement due to prefetching effectively
for the benchmarks that exhibited an already high
cache hit ratio but it was not capable of estimating
this improvement for benchmarks with low cache hit
ratios. These particular benchmarks (with low cache
hit ratios) are known to be more memory intensive
and therefore they are good candidates for testing
the effectiveness of a prefetcher. Since SimPoint was
unable to accurately capture the relative improve-
ment for the benchmarks that were most relevant for
prefetching, we conclude that SimPoint cannot be
confidently used for prefetching studies. We believe
that using a different criteria rather than the Basic
Block Vectors for grouping intervals could yield bet-
ter results. Specifically, for cache studies it may be
a better idea to use the spatial and temporal locality
distributions introduced in [2], [3], and [4] to group
similar intervals together.

Our branch prediction data shows that although
SimPoint does estimate the overall branch prediction
accuracy quite well, it cannot capture the phase be-
havior exhibited by certain individual branches. We
believe that in order to capture variation in behavior
of a branch a larger set of data points is needed than
used by SimPoint. We plan to further investigate other
criteria used to identify branches that show phase
behavior in the hope of identifying more of these
branches both with and without the use of SimPoint.

References
[1] Simpoint. http://www.cs.ucsd.edu/calder/simpoint/, March

2005.
[2] Thomas M. Conte and Wen mej W. Hwu. Benchmark

characterization for experimental system evaluation. In
1990 Hawaii international Conference on System Sciences
(HICSS), volume 1, pages 6–18, 1990.

[3] Thierry Lafage and Andre; Seznec. Choosing representative
slices of program execution for microarchitecture simulations:
a preliminary application to the data stream. pages 145–163,
2001.

[4] Jeremy Lau, Stefan Schoenmackers, and Brad Calder. Struc-
tures for phase classification. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems
and Software. IEEE Computer Society, 2004.

[5] Onur Mutlu, Hyesoon Kim, and Yale Patt. Efficient process-
ing in runahead execution engines. In ISCA ’05: Proceedings
of the 32nd annual international symposium on Computer
architecture, 2005.

[6] Frank P. O’Connell and Steven W. White. Power3: The next
generation of powerpc processors. IBM Journal of Research
and Development, 44(6):873–884, 2000.

[7] A. J. Klein Osowski and David J. Lilja. Minnespec: A
new spec benchmark workload for simulation-based computer
architecture research. Computer Architecture Letters, 1, 2002.

[8] Vijay Janapa Reddi, Alex Settle, Daniel A. Connors, and
Robert S. Cohn. Pin: A binary instrumentation tool for
computer architecture research and education. In Proceedings
of the Workshop on Computer Architecture Education, June
2004.

[9] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic
block distribution analysis to find periodic behavior and sim-
ulation points in applications. In PACT ’01: Proceedings of
the 2001 International Conference on Parallel Architectures
and Compilation Techniques, pages 3–14. IEEE Computer
Society, 2001.

[10] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad
Calder. Automatically characterizing large scale program
behavior. In ASPLOS, pages 45–57, 2002.

[11] Joshua J. Yi, Sreekumar V. Kodakara, Resit Sendag, David J.
Lilja, and Douglas M. Hawkins. Characterizing and com-
paring prevailing simulation techniques. Laboratory for Ad-
vanced Research in Computing Technology and Compilers,
February 2005.

10

Appendix I
Prefetch Data Sample
########################SLICE NUMBER1
1 DL2 L2 Data Cache:
1 DL2 Load-Hits: 1851 3.28%
1 DL2 Load-Misses: 54531 96.72%
1 DL2 Load-Accesses: 56382 100.00%
1 DL2
1 DL2 STORE-Hits: 430 0.39%
1 DL2 STORE-Misses: 110987 99.61%
1 DL2 STORE-Accesses: 111417 100.00%
1 DL2
1 DL2 PREFETCH-Hits: 0 nan%
1 DL2 PREFETCH-Misses: 0 nan%
1 DL2 PREFETCH-Accesses: 0 nan%
1 DL2
1 DL2 Total-Hits: 2281 1.36%
1 DL2 Total-Misses: 165518 98.64%
1 DL2 Total-Accesses: 167799 100.00%

########################SLICE NUMBER2
2 DL2 L2 Data Cache:
2 DL2 Load-Hits: 494086 64.75%
2 DL2 Load-Misses: 268954 35.25%
2 DL2 Load-Accesses: 763040 100.00%
2 DL2
2 DL2 STORE-Hits: 493072 54.49%
2 DL2 STORE-Misses: 411735 45.51%
2 DL2 STORE-Accesses: 904807 100.00%
2 DL2
2 DL2 PREFETCH-Hits: 0 nan%
2 DL2 PREFETCH-Misses: 0 nan%
2 DL2 PREFETCH-Accesses: 0 nan%
2 DL2
2 DL2 Total-Hits: 987158 59.19%
2 DL2 Total-Misses: 680689 40.81%
2 DL2 Total-Accesses: 1667847 100.00%

########################SLICE NUMBER3
3 DL2 L2 Data Cache:
3 DL2 Load-Hits: 1303796 66.37%
3 DL2 Load-Misses: 660645 33.63%
3 DL2 Load-Accesses: 1964441 100.00%
3 DL2
3 DL2 STORE-Hits: 660322 50.01%
3 DL2 STORE-Misses: 660067 49.99%
3 DL2 STORE-Accesses: 1320389 100.00%
3 DL2
3 DL2 PREFETCH-Hits: 0 nan%
3 DL2 PREFETCH-Misses: 0 nan%
3 DL2 PREFETCH-Accesses: 0 nan%
3 DL2
3 DL2 Total-Hits: 1964118 59.79%
3 DL2 Total-Misses: 1320712 40.21%
3 DL2 Total-Accesses: 3284830 100.00%

11

Appendix II
Branch Prediction Data Sample
########################SLICE NUMBER1

References =15604926
Mispredicts =142544
NumItems 1048
DATA:START
counters
:
0x004a685d: 1 0

.

.

.

0x0804869d: 0 1
0x080486f1: 0 1
0x0804c052: 1 608073
0x0804c06d: 57026 673185
0x0804c075: 23 122137
0x0804c07a: 2 608072
0x0804c08d: 1 608072
0x0804c092: 29756 578317
0x0804c096: 1 27946
0x0804c0be: 23290 126794
0x0804c13d: 1 255
0x0804c15f: 1 0
0x0804c16b: 1 0
0x0804c18b: 1 608072
0x0804c19b: 17792 590281
0x0804c1a4: 10715 579960
0x0804c1ad: 0 580126
0x0804c22e: 2 608071
0x0804c236: 0 608073
0x0804c260: 1822 8727
0x0804c350: 1 0
0x0804c374: 0 1
0x0804c3a8: 0 1
0x0804c3d1: 0 1
0x0804cf4c: 1 0
0x0804cf8f: 1 0
0x0804f4f3: 1 0
0x0804f4fd: 1 0
0x0804f507: 1 0
0x0804f50b: 0 1
0x0804ff52: 0 1
0x0804ff9c: 1 2
0x0804ffa2: 1 2
0x0804ffba: 3 89085
0x0804ffc3: 1 2
0x08050281: 1 0
0x080502a6: 0 1
0x080502c6: 2 72
0x080502ca: 1 72
0x080502da: 0 73

12

0x080502f5: 1 0
0x08050304: 1 1
0x0805030f: 1 1
0x0805033b: 1 1
0x080504a3: 1 1338284
0x080504a8: 1 1338284
0x080504bf: 0 1338285
0x08050502: 1 1338284
0x08050563: 1 608073
0x0805056c: 1 608073
0x0805057b: 1 608073
0x0805058f: 2 608072
0x08050598: 1 608073
0x08050687: 1 0
0x08050692: 0 1
0x0805069b: 1 0
0x080506a7: 1 0
0x080506b0: 1 0
0x080506e2: 1 0
0x080506fe: 0 1
0x0805070b: 1 0
0x08050721: 1 0
0x0805072b: 1 0
0x0805074c: 2 29608
0x08050759: 0 1
0x08050784: 0 1
0x08050b1c: 1 2
0x08050b21: 1 2
0x08050ba3: 0 1
0x08050bfe: 1 0
DATA:END

13

Appendix III
List of Scripts
III.1 run pin

Runs PIN instrumentation tool with a benchmark, input set, and a PIN tool specified from the command line.

III.2 get gshare data.pl
Parses the raw branch prediction data file to gather all branch data and identify branches of interest based on a

criteria specified from the command line. Also picks branches identified using simpoints based on the same criteria
and returns output in a format specified by the command line.

III.3 get branch plots.tcsh
Calls the get gshare data.pl with +plot option to generate data files that can be plotted to generate graphs similar

to 2. This also generates a gnuplot script that can be used to graphically view all the data files.

III.4 get gshare indiv specfp.tcsh
Calls the get gshare data.pl and reports the number of branches of interest identified (using all slices and using

only SimPoint slices) in raw branch prediction data output files from SPECFP.

III.5 get gshare indiv specint.tcsh
Calls the get gshare data.pl and reports the number of branches of interest identified (using all slices and using

only SimPoint slices) in a raw branch prediction data output files from SPECINT.

III.6 get gshare simpoints.pl
Parses the branch prediction raw data file and the output from SimPoint to generate the actual branch prediction

accuracy and simpoint estimate branch prediction accuracy.

III.7 get gshare simpoints specfp.tcsh
Calls get gshare gshare simpoints.pl for all the branch prediction files from SPEC FP.

III.8 get gshare simpoints specint.tcsh
Calls get gshare gshare simpoints.pl for all the branch prediction files from SPEC INT.

III.9 get prefetch simpoints.pl
Parses the prefetching raw data file and the output from SimPoint to generate the actual hit ratio and simpoint

estimate hit ratio.

III.10 get prefetch simpoints specfp.tcsh
Calls get gshare gshare simpoints.pl for all the branch prediction files from SPEC FP.

III.11 get prefetch simpoints specint.tcsh
Calls get gshare gshare simpoints.pl for all the branch prediction files from SPEC INT.

III.12 parse gshare simpoints.awk
Parses the output from get gshare simpoints specint.tcsh and get gshare simpoints specfp.tcsh to generate a table

similar to Table IV.

III.13 parse identified.awk
Parses the output from get gshare indiv specfp.tcsh and get gshare indiv specint.tcsh to generate a table similar

to Table V.

III.14 parse prefetch simpoints.awk
Parses the output from get prefetch simpoints specint.tcsh and get prefetch simpoints specfp.tcsh to generate a

table similar to Table I.

14

