
Evaluation of SimPoint for Specific
Architectural Studies

Veynu Narasiman
narasima@ece.utexas.edu

Aater Suleman
suleman@ece.utexas.edu

1 Introduction
As microprocessor complexity increases,

the time required to complete a thorough
simulation of an entire benchmark will be-
come a bigger and bigger challenge that
computer architects have to face. This sim-
ulation time is orders of magnitude greater
than the time required to run the benchmark
on real hardware, thus, it is no longer fea-
sible to simulate long benchmarks in their
entirety. Given such a scenario, there is a
definite need to reduce this simulation time
so that computer architecture research can be
performed efficiently in the future. SimPoint
[1] is a popular tool used to select rep-
resentative samples of a benchmark. These
samples are then used for simulation, instead
of the entire benchmark, resulting in a sig-
nificantly shorter simulation time.

Since these samples will be used by com-
puter architects to determine performance
improvements, it is imperative that there
should be little compromise in accuracy.
Otherwise, the results obtained when using
SimPoint could not be trusted. The goal of
our project is to evaluate the effectiveness of
using SimPoint in determining the relative
performance improvement of a particular
architectural enhancement. The results will
either validate or invalidate the effectiveness
of using SimPoint for particular architecture
studies.

2 Background and Motiva-
tion

The aim of most computer architecture
research is to evaluate the impact of some

enhancement on the overall performance.
Therefore, the most important requirement
of SimPoint or any other technique that
reduces the size of benchmark code is that
it should successfully capture the relative
performance improvement obtained from the
enhancement. Several different attempts have
been made to evaluate the effectiveness of
sampling tools (such as SimPoint). Most
of them simply compared metrics (such as
IPC, cache miss rate, and branch prediction
accuracy) obtained using SimPoint to those
obtained from simulating the entire bench-
mark but did not measure SimPoint’s ability
to successfully capture relative performance
improvements.

For example, [4], is a paper from Calder
et al. that describes the methodologies Sim-
Point uses to pick the representative samples
of a benchmark. It concludes with a compari-
son of the IPC calculated from simulating an
entire application to the IPC calculated from
only simulating the samples SimPoint chose.
The results obtained showed that using the
samples from SimPoint produced an IPC
that was within three percent of the actual
IPC obtained from simulation of the entire
benchmark. This particular paper only com-
pares the IPC, citing it as the most important
metric for evaluation.

Another paper, [3], also from Calder et
al., describes using Basic Block Distribution
Analysis as a technique for finding simula-
tion points. This paper uses multiple metrics
to determine the accuracy of the proposed
sampling technique. The metrics they use
are IPC, Register Update Unit (RUU) oc-
cupancy, cache miss rate, branch prediction



miss rate, address prediction miss rate, and
value prediction miss rate. Once again, the
value for the metric obtained using SimPoint
was compared to the actual value obtained
from simulation of the entire benchmark. For
certain metrics such as IPC, the error was
always within five percent, which is tolera-
ble. However, for data cache miss rate and
address prediction miss rate, the error could
rise to as much as 20%. Such results suggest
that SimPoint may not be appropriate for
certain architectural studies. In addition, this
paper did not target a specific architectural
enhancement which is what we plan to do
for our project.

A recent paper from Hawkins et al., [5],
evaluates the effectiveness of various sam-
pling techniques such as SMARTS and Sim-
Point. This paper uses five different criteria
to compare these sampling techniques. The
important result here is that sampling the
benchmark is the best technique to reduce
the length of a benchmark for detailed ex-
ecution. It is noteworthy to point out that
one of the metrics used was architectural
configuration dependence. It is important to
computer architects that architectural config-
uration dependence remains unchanged after
sampling. Only then can the results obtained
be accepted with confidence.

Although most of these papers suggest
that SimPoint is a powerful tool, according
to [5], computer architects are hesitant to use
SimPoint to determine the relative perfor-
mance improvement for their study. In our
project, we plan to evaluate the effectiveness
of SimPoint targeted to specific architectural
studies. A few of these particular studies are
discussed below.

One of the architectural enhancements we
plan on implementing is data prefetching.
We want to see if the relative performance
improvement obtained using SimPoint is
comparable to the actual performance im-
provement from prefetching. We have not
encountered any previous papers that eval-
uate SimPoint’s ability to accurately cap-
ture the relative performance improvement

obtained from prefetching. Our results will
either validate or invalidate the use of Sim-
Point for architects doing research in the area
of prefetching.

We also want to test SimPoint’s effective-
ness for studies related to branch character-
ization. One idea is to measure SimPoint’s
ability to accurately capture the variation in
the predictability of a particular branch. Pre-
vious papers that have evaluated SimPoint
looked at the overall branch prediction miss
rate, but they do not focus on individual
branches within a program. Validating Sim-
Point’s ability to capture this information
would allow computer architects performing
research in this field to use SimPoint confi-
dentally.

3 Research Plan
In order to conduct our research, we need

to compare the true results obtained from
complete simulation to those obtained using
the SimPoint tool. We decided to use the
SPEC 2000 benchmark suite for our compar-
isons since it is a widely accepted benchmark
suite used by computer architects for their
research. We plan to use the SPEC bench-
marks with the reference input set because
they are the most representative of real-world
applications. However, the drawback of us-
ing the reference input set is that the sim-
ulation can be very time consuming. Thus,
instead of using a simulator, we decided to
use an instrumentation tool, PIN [2], for
our experiments. We are going to develop
tools implementing caches, prefetchers, and
branch predictors that can be used with PIN
to compute relevant statistics such as cache
miss rates and branch prediction miss rates.
We will collect this data for not only the
entire benchmark, but also for the individual
intervals. We will then use SimPoint to select
the representative intervals and use the statis-
tics from those intervals only to estimate the
overall statstics. We will then compare this
estimated value to the actual value recorded
when simulating the entire benchmark.



The tools we want to develop for PIN
will closely approximate cycle-accurate sim-
ulation. We will validate these tools by
comparing the results to a previously done
cycle-accurate simulation. We also need to
program in the ability to collect statistics
for each interval as well as for the entire
application.

4 Conclusion
As an outcome of this project, we expect

to either validate or invalidate the use of
SimPoint for particular architectural stud-
ies. We will base our conclusion on the
data collected using the aforementioned re-
search plan. Specifically, we will evalu-
ate SimPoint’s ability to accurately portray
the performance improvement obtained with
prefetching, as well as its ability to ac-
curately identify branch predictability. The
results obtained from our prefecthing ex-
periment could possibly validate the use of
SimPoint for architects doing work in that
field. Likewise, those involved in branch pre-
diction, especially those interested in identi-
fying hard to predict branches, could also use
SimPoint more confidentally.

References
[1] Simpoint. http://www.cs.ucsd.edu/calder/simpoint/,

March 2005.
[2] Vijay Janapa Reddi, Alex Settle, Daniel A. Connors,

and Robert S. Cohn. Pin: A binary instrumentation tool
for computer architecture research and education. In
Proceedings of the Workshop on Computer Architecture
Education, June 2004.

[3] Timothy Sherwood, Erez Perelman, and Brad Calder.
Basic block distribution analysis to find periodic be-
havior and simulation points in applications. In PACT
’01: Proceedings of the 2001 International Conference
on Parallel Architectures and Compilation Techniques,
pages 3–14, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[4] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically characterizing large scale
program behavior. In ASPLOS, pages 45–57, 2002.

[5] Joshua J. Yi, Sreekumar V. Kodakara, Resit Sendag,
David J. Lilja, and Douglas M. Hawkins. Character-
izing and comparing prevailing simulation techniques.
Laboratory for Advanced Research in Computing Tech-
nology and Compilers, February 2005.


