Predicting Performance Impact of DVFS for Realistic Memory Systems

Rustam Miftakhutdinov '

Abstract

Dynamic voltage and frequency scaling (DVFS) can make modern
processors more power and energy efficient if we can accurately
predict the effect of frequency scaling on processor performance.
State-of-the-art DVFS performance predictors, however, fail to accu-
rately predict performance when confronted with realistic memory
systems. We propose CRIT+BW, the first DVFS performance predic-
tor designed for realistic memory systems. In particular, CRIT+BW
takes into account both variable memory access latency and per-
formance effects of prefetching. When evaluated with a realistic
memory system, DVFS realizes 65% of potential energy savings when
using CRIT+BW, compared to less than 34% when using previously
proposed DVFS performance predictors.

1. Introduction

Dynamic voltage and frequency scaling (DVFS) [1, 15] enables sig-
nificant improvements in power and energy efficiency of modern
processors. With DVFS support, a processor can alter its perfor-
mance and power consumption on the fly by changing its frequency
and supply voltage. This ability allows the processor to continuously
adapt to dynamically changing application characteristics.

Exploiting the full potential of DVFS requires accurate perfor-
mance and power prediction. If the processor can accurately predict
what its performance and power consumption would be at any op-
erating point, it can switch to the optimal operating point for any
efficiency metric (e.g., energy or energy-delay-squared).

Existing DVFS performance predictors, however, fail to accurately
predict performance under frequency scaling due to their unrealistic
view of the off-chip memory system. Recently, two DVFS perfor-
mance predictors have been proposed: leading loads [12,20,34]! and
stall time [12,20]. Both assume a linear DVFS performance model,
which, as we show in Section 3.2, does not model the performance
effects of prefetching. In addition, leading loads was inspired by a
simplified constant access latency view of memory and breaks down
when confronted with a more realistic variable latency memory sys-
tem. Figure 1 illustrates how the fraction of potential energy savings
actually realized by leading loads and stall time on memory-intensive
workloads decreases as we increase the realism of the modeled mem-
ory system.

In this paper, we propose CRIT+BW, the first DVFS performance
predictor for an out-of-order processor with a realistic DRAM sys-
tem and a streaming prefetcher. We focus on the realism of the
memory system because the effect of chip frequency scaling on per-
formance depends largely on memory system behavior (as described
in Section 2.2). Therefore, any DVFS performance predictor must be
designed for and evaluated with a realistic memory system.

We develop CRIT+BW in two steps. First, we address variable
memory access latency—a key characteristic of modern DRAM sys-
tems ignored by leading loads. To this end, we design CRIT, a DVFS

! These three works propose very similar techniques. We use the name “leading loads”
from Rountree et al. [34] for all three proposals.

2Section 4.3 describes the dynamic optimal DVFES policy used to calculate potential
energy savings.

Eiman Ebrahimi*
TThe University of Texas at Austin
{rustam,patt}@hps.utexas.edu

Yale N. Pattf
¥Nvidia Corporation
ebrahimi®@hps.utexas.edu

Leading loads Stall time = Potential mmm

<0.1%

Constant Memory Realistic DRAM Realistic DRAM +
Latency Streaming Prefetcher

Energy Reduction (%)
S = 0 W kA NN

Figure 1: Energy savings realized by leading loads and stall time
versus potential energy savings on 13 memory-intensive
SPEC 2006 benchmarks

performance predictor that accounts for variable memory access
latency. The key idea is to predict the memory component of execu-
tion time by measuring the critical path through memory requests
(hence the name “CRIT”). Second, we show that in the presence
of prefetching, performance may be limited by achievable DRAM
bandwidth—an effect ignored in the linear DVFS performance model
used by leading loads and stall time. We develop a new limited band-
width DVFS performance model that accounts for this effect and
extend CRIT to use this performance model; CRIT+BW is the result
(“BW?” is shorthand for “bandwidth”).

We evaluate CRIT+BW on an out-of-order processor capable of
scaling the chip frequency from 1.5 GHz to 4.5 GHz, featuring
a streaming prefetcher and a modern 800 MHz DDR3 SDRAM
memory system. Across SPEC 2006, CRIT+BW realizes 65% of
potential energy savings, compared to 34% for stall time and 12%
for leading loads.

2. Background
2.1. Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) [1,15] helps increase
power and energy efficiency of modern processors. DVFS does
so by allowing the processor to switch between operating points
(voltage/frequency combinations) at runtime. This capability gives
rise to the problem of choosing the optimal operating point at runtime.

Traditionally, DVFS has been applied at the chip level only;
recently, however, other DVFS domains have been proposed.
David et al. [9] propose DVEFS for off-chip memory and Intel’s West-
mere [23] supports multiple voltage/clock domains inside the chip.
In this work, we focus on chip level DVFES.

2.2. DVFS Performance and Power Prediction

Estimating the performance impact of changing the chip’s operating
point is critical to choosing the optimal operating point. Which
operating point is optimal depends on the chosen efficiency metric,
e.g., energy or energy-delay-squared. All commonly used efficiency

Load E
Memory
Requests Load B Load D
Load A Load C
Chip Activity
- Time
Phase | Compute Memory Compute Memory Compute

Figure 2: Two-phase abstract view of out-of-order execution used by leading loads

metrics are functions of execution time and power. Hence, choosing
an optimal operating point requires a prediction of both performance
and power at each of the available operating points. In this paper, we
focus on performance prediction.

Predicting performance at different chip frequencies is made par-
ticularly difficult by the interaction between frequency scaling and
the memory system’s effect on performance. While memory latencies
(as measured in seconds) are not affected by chip frequency scaling,
they do scale with chip frequency in terms of processor cycles. The
impact of these delay fluctuations on processor performance depends
on the application, which further complicates DVFS performance
prediction.

A DVFS performance predictor generally employs a performance
model that predicts performance across a range of frequencies based
on parameters measured at runtime. Specifically, the predictor mea-
sures these parameters during an execution interval and feeds them
into the performance model to produce a performance estimate for
every available frequency. These estimates, together with the cor-
responding power estimates, are then used to select the estimated
optimal operating point for the next execution interval. Once the next
execution interval ends, the process repeats.

Most published DVFS performance predictors [5-8, 10, 25, 29]

rely on existing performance counters as inputs to their performance
models. Many [5-8,25] use statistical regression analyses to correlate
measured parameters with observed performance. An alternative
approach is to design new hardware counters based on insight into
the microarchitectural effects of frequency scaling, as done by the
leading loads and stall time mechanisms described below.
2.2.1. Leading Loads. Leading loads [12,20, 34] is a state-of-the-
art DVFS performance predictor for out-of-order processors. The
leading loads predictor was designed based on two simplifying as-
sumptions about the memory system:

1. all memory requests have the same latency, and

2. after an instruction fetch or a data load misses in the last level
cache and generates a memory request, the processor continues
to execute but eventually runs out of ready instructions and stalls
before the memory request returns.

Figure 2 shows the abstract view of execution implied by these
assumptions. In this view, the out-of-order processor splits its time be-
tween two alternating phases: compute and memory. In the compute
phase, the processor runs without generating any memory requests
due to instruction fetches or data loads. As soon as the processor
generates the first such memory request, the compute phase ends
and the memory phase begins. At first, the out-of-order processor
continues to execute instructions independent of the original memory
request and may generate more memory requests. Eventually, how-
ever, the processor runs out of ready instructions and stalls. Since the
processor generated the memory requests at roughly the same time,

execution time T

Ceompute X

Tmem ory

0 cycle time ¢

Figure 3: Linear DVFS performance model

and the memory requests have the same latencies, they return data to
the chip at about the same time as well. As soon as the first memory
request returns, the memory phase ends and another compute phase
begins.

This two-phase view of execution predicts a linear relationship
between execution time 7" and chip cycle time ¢. To show this, we let

T= Tcompule + Tmemory:

where Tcompute denotes the total length of the compute phases and
Tmemory denotes the total length of the memory phases. As ¢ changes
due to DVFS, the number of cycles Ceompute the chip spends in
compute phases stays constant; hence

Teompute (1)= Ceompute X 1.

Meanwhile, Tinemory remains constant for every frequency. Thus,
given measurements of Ceompute and Tmemory at any cycle time, we
can predict execution time at any other cycle time:

T(t)= Ceompute X I+ Tmemory - (€Y

Figure 3 illustrates this linear model.

Leading loads introduces a hardware counter that continually ac-
cumulates Tmemory- In each memory phase, the latency of the first
memory request generated by a load is added to the counter; hence the
name “leading loads.” To estimate Ccompute, leading loads employs
existing performance counters to measure 7'(r) and calculates

T(t) - Tmemory

Ccompule = ;

Note that, even though leading loads is derived from a simplified
constant access latency view of memory, the mechanism can still be
applied to more realistic memory systems.

2.2.2. Stall Time. Like leading loads, the stall time [12,20] DVFS
predictor uses the linear DVES performance model. The key idea is

Load E
Memory
Requests Load B Writeback Load D
Load A Load C Store
Chip Activity

Time

Figure 4: Abstract view of out-of-order processor execution with a variable latency memory system

simple: the time the processor spends unable to retire instructions
due to an outstanding off-chip memory access should stay roughly
constant as chip frequency is scaled (since this time depends largely
on memory latency, which stays constant). The stall time predictor
uses this time as the memory component of execution time (Tmemory
in Equation 1).

Unlike leading loads, the stall time predictor is not based on an
abstract view of execution. The connection between retirement stalls
due to memory accesses and Tmemory 18 intuitive but not mathemati-
cally precise.

2.3. Realistic Memory System Architecture

Modern memory systems employ dynamic random access memory
(DRAM) and streaming prefetching.

2.3.1. DRAM. In modern DRAM systems, contrary to leading loads’
simplified constant access latency view of memory, memory request
latency varies based on the addresses of the access stream [28]. Every
memory address is statically mapped to one of several memory banks
and one of many rows within its bank. Requests that map to different
banks can be serviced in parallel, while those that map to the same
bank have to be serviced serially. Among requests mapped to the
same bank, requests that map to the same row, a 2-8 KB aligned block
of memory, can be serviced faster than those that map to different
rows. Memory request latencies also vary due to their wait time in
the memory controller’s queues.

2.3.2. Streaming Prefetcher. Streaming prefetchers are used in
many commercial processors [2, 16,24] and can greatly improve
performance of memory intensive applications that stream through
contiguous data arrays. Streaming prefetchers do so by detecting
memory access streams and generating memory requests for data
the processor will request further down stream. A well-performing
streaming prefetcher significantly increases processor demand for
memory bandwidth.

3. DVFS Performance Prediction on Realistic Memory
Systems

We develop CRIT+BW, our DVES performance predictor for realistic
memory systems, in two steps.

First, we design CRIT, a DVFES performance predictor for a pro-
cessor with a realistic DRAM system but no prefetcher. Like leading
loads and stall time, CRIT measures the memory component of ex-
ecution time within the confines of the linear DVFS performance
model.

Second, we extend CRIT to account for performance effects of
prefetching. We show that timely prefetching exposes the limiting
effect of memory bandwidth on performance and develop a new
DVES performance model that accounts for this effect. The complete
CRIT+BW predictor consists of the limited bandwidth DVES perfor-
mance model and hardware mechanisms that measure its parameters.

3.1. Realistic DRAM System with No Prefetching

Introducing a realistic DRAM system breaks the leading loads’ ab-
stract view of execution based on constant latency memory. Specifi-
cally, memory requests can now have very different latencies depend-
ing on whether they contend for DRAM banks and whether they map
to the same row. Hence, the abstract view of processor execution
relied on by leading loads becomes incorrect and, as we demonstrated
in Figure 1, the predictor becomes ineffective.

Still, in the absence of prefetching, the other premise of leading
loads (and stall time) still applies: after sending out a few instruction
fetch or data load memory requests the processor eventually stalls.
Figure 4 illustrates the abstract view of processor execution when
memory latency is allowed to vary. Note that the processor eventually
stalls under fetch and load memory requests.

This observation implies that execution time can still be modeled
as the sum of a memory component whose latency remains constant
under DVFS, and a compute component whose latency under DVES
changes in proportion to cycle time. Hence, the linear DVFS per-
formance model (Equation 1) still applies in the case of a variable
access latency memory system.

The introduction of variable memory access latencies, however,
complicates the task of measuring the memory component Tinemory-
We must now calculate how execution time is affected by multiple
memory requests with very different behaviors. Some of these re-
quests are serialized (the first returns its data to the chip before the
second one enters the memory controller). This serialization may be
due to:

1. program dependencies (e.g., pointer chasing), or

2. limited core resources (e.g., if the out-of-order instruction win-
dow is too small to simultaneously contain both instructions
corresponding to the two memory requests).

Other requests, however, overlap freely.

To estimate Tmemory in this case, we recognize that in the linear
DVFS performance model, Tiemory is the limit of execution time as
chip frequency approaches infinity (or, equivalently, as chip cycle
time approaches zero). In that scenario, the execution time equals the
length of the longest chain of dependent memory requests that stall
the processor (i.e., data loads and instruction fetches). We refer to
this chain as the critical path through the memory requests.

To calculate the critical path, we must know which memory re-
quests are dependent (and remain serialized at all frequencies) and
which are not. We observe that independent memory requests al-
most never serialize; the memory controller schedules independent
requests as early as possible to overlap their latencies. Hence, we
make the following assumption:

If two memory requests are serialized (the first one com-
pletes before the second one starts), the second one de-
pends on the first one.

Load E
Memory
Requests Load B Writeback Load D
load A Load C Store
Chip Activity
Time
Pyiobal | 0 A B A+C A+C+D |A+C+E
Figure 5: Critical path calculation example
3.1.1. Hardware Mechanism. We now describe CRIT, the hardware 350
mechanism that uses the above assumption to estimate the critical
path through load and fetch memory requests. CRIT maintains one B 300 .
global critical path counter Pyjopa and, for each outstanding DRAM ::; 250 .
request i, a critical path timestamp P;. Initially, the counter and B .

. : g 200 . .
timestamps are set to zero. When a request i enters the memory 5 @0 00000 o ®
controller, the mechanism copies FPyjopa) into F;. After some time AT E 150
the request completes its data transfer over the DRAM bus. At that & 100

. . . . Q
time, if the request was generated by an instruction fetch or a data g
load, CRIT sets Pyjghal = Max(Pyiobal, P; +AT'). As such, after each =50
fetch or load request i, CRIT updates Pyjopy if request i is at the end 0

of the new longest path through the memory requests.
Figure 5 illustrates how the mechanism works. We explain the
example step by step:

1. At the beginning of the example, Fyjopal is zero and the chip is
in a compute phase.

2. Eventually, the chip incurs two load misses in the last level
cache and generates two memory requests, labeled Load A and
Load B. These misses make copies of Pyjopal» Which is still zero
at that time.

3. Load A completes and returns data to the chip. Our mechanism
adds the request’s latency, denoted as A, to the request’s copy
of Pyjobal- The sum represents the length of the critical path
through Load A. Since the sum is greater than Fyjop,), which is
still zero at that time, the mechanism sets Pgjobal to A.

4. Load A’s data triggers more instructions in the chip, which gen-
erate the Load C request. Load C makes a copy of Pyjobal, Which
now has the value A (the latency of Load A). Initializing the
critical path timestamp of Load C with the value A captures the
dependence between Load A and Load C: the latency of Load C
will eventually be added to that of Load A.

5. Load B completes and ends up with B as its version of the critical
path length. Since B is greater than A, B replaces A as the length
of the global critical path.

6. Load C completes and computes its version of the critical path
length as A +C. Again, since A+ C > B, CRIT sets Pyobal
to A+ C. Note that A+ C is indeed the length of the critical
path through Load A, Load B, and Load C.

7. We ignore the writeback and the store because they do not cause
a processor stall.

8. Finally, the chip generates requests Load D and Load E, which
add their latencies to A + C and eventually result in Pgjobar =
A+C+E.

We can easily verify the example by tracing the longest path between
dependent loads, which indeed turns out to be the path through Load A,
Load C, and Load D. Note that, in this example, leading loads would
incorrectly estimate Tmemory as A+ C+D.

0 100 200 300 400 500 600 700 800
Cycle time (ps)

Figure 6: Time per instruction versus cycle time for bwaves with a
streaming prefetcher enabled

3.2. Realistic DRAM System with Prefetching

Adding a prefetcher to the system changes the effect of DVFS on
performance. Figure 6 shows time per instruction (TPI) for 100K
retired instructions from bwaves at sixteen different cycle times
(666-222 ps or 1.5-4.5 GHz) with a streaming prefetcher enabled.
Note that these data points do not admit a linear approximation.
This example is one of many where the linear performance model
used by leading loads, stall time, and CRIT fails in the presence of
prefetching.

The linear performance model fails due to the special nature of

prefetching. Unlike demand memory requests, a prefetch request
is issued in advance of the instruction that consumes the request’s
data. A prefetch request is fimely if it fills the cache before the
consumer instruction accesses the cache. Timely prefetches do not
cause processor stalls; hence, their latencies do not affect execution
time. Without stalls, however, the processor may generate prefetches
at a high rate, exposing another performance limiter: the rate at which
the memory system can satisfy memory requests (i.e., the memory
bandwidth).
3.2.1. Limited Bandwidth Performance Model. We now describe
a performance model, illustrated in Figure 7, that takes into account
the performance limiting effect of finite memory bandwidth exposed
by prefetching. This model splits the chip frequency range into two
parts:

1. the low frequency range where the DRAM system can service
memory requests at a higher rate than the chip generates them,
and

2. the high frequency range where the DRAM system cannot ser-
vice memory requests at the rate they are generated.

In the low frequency range, shown to the right of fcrossover in
Figure 7, the prefetcher runs ahead of the demand stream because the
DRAM system can satisfy prefetch requests at the rate the prefetcher

execution time 7'

/

Tmin
memory -
s Ccompute xt

Tprefglch‘ 'sléll (t)

Tgemand |

0 Tcrossover cycle time ¢

Figure 7: Limited bandwidth DVFS performance model

generates them. Hence, most prefetches are timely and instructions
that use prefetched data result in cache hits. Execution time in this
case is modeled by the original linear model, with only the non-
prefetchable demand memory requests contributing to the memory
component of the execution time, which we refer to as Tyemand-

In the high frequency range, shown to the left of #crossover in Fig-
ure 7, the prefetcher fails to run ahead of the demand stream due
to insufficient DRAM bandwidth. As the demand stream catches
up to the prefetches, some demand requests stall the processor as
they demand data that the prefetch requests have not yet brought
into the cache. The delay due to these processor stalls is shown as
Tprefetch stall ([) in the figure.

Note that in the high frequency range the execution time is de-
termined solely by T,gg,‘;ory: the minimum time the DRAM system
needs to satisfy all of the memory requests. Therefore, execution
time does not depend on chip frequency in this case.

The limited bandwidth DVFS performance model shown in Fig-
ure 7 has three parameters:

1. the critical path through non-prefetchable demand memory re-
quests Tgemands

2. the number of cycles Ceompute that the chip spends in the com-
pute phase, and

3. the minimum time T[?eir‘}mry required by the DRAM system to sat-
isfy the observed sequence of memory requests (both demands
and prefetches).

Given the values of these parameters, we can estimate the execution
time at any other cycle time ¢ as follows:

T(t) = max (angﬁlow, Ccompute Xt+ Tdemand) . 2

3.2.2. Measuring Model Parameters. We now describe the hard-
ware mechanisms to measure the parameters of the limited bandwidth
DVFS performance model: Tgemand> Ceompute, and Tn‘}gr‘:mry. These
mechanisms, together with the limited bandwidth DVFS performance
model, comprise CRIT+BW—our complete DVES performance pre-
dictor.

We measure Tgemang In almost the same way as we measure
Tmemory in CRIT (Section 3.1): by calculating the critical path
through memory requests. The only difference is that we exclude all
prefetch requests and prefetchable demand requests from this calcula-
tion (just like we exclude stores and writebacks in CRIT). As shown
in Figure 7, the extra chip stall time due to these prefetching-related
requests, Tprefetch stall (), disappears at low frequencies. Therefore,

Storage Component Quantity Width Bits
Global critical path counter Pyjobal 1 32 32
Copy of Pglobal per memory request 32 32 1024
Global DRAM slack counter 1 32 32
DRAM bus slack counter 1 32 32
Per DRAM bank slack counters 8 16 128
Prefetch stall counter 1 32 32
Total bits 1280

Table 1: Hardware storage cost of CRIT+BW

this time is not a part of Tyemand, Which stays constant across frequen-
cies.
To calculate Ceompute We recognize that

T(t) = Tdemand + Ccompute Xt+ Tprefelch stall (t)

We can solve this equation for Ccompute if we can measure
Tprefetch stall (). To this end, we introduce a new hardware counter
that tracks the time the processor is stalled while only prefetch re-
quests and prefetchable demand requests are outstanding. With
Tprefetch stall (f) Now known, we have

T(l) — Tdemand — Tprefetch stall(l)

Ccompute = ;

Recall that ng;;mry is defined as the minimum time the DRAM
system needs to satisfy all of the memory requests. We can calculate
Temory if we can measure the amount of slack Timemory slack in the
memory system, because

Tmmeirr:lory = T(t) - Tmemory slack ([) 3)

The description of the slack measurement hardware follows.

Whenever the memory controller schedules a DRAM command
(e.g., “precharge” or “column access”), it must ensure that the com-
mand does not violate DRAM timing constraints. Hence, the memory
controller can compute the slack of the DRAM command: how much
earlier could the DRAM command have been scheduled without
violating the DRAM timing constraints. The memory controller ac-
cumulates this slack separately for each DRAM bank and for the
DRAM bus.

The presence of DRAM slack, however, does not always imply
that the DRAM command could have been scheduled earlier. In fact,
the slack may be due to the inability of the memory controller to
schedule distant memory requests in parallel owing to the finite size
of its scheduling window.

We account for this limitation when measuring slack in order to not
overpredict the amount of reducible slack. To do this, we reset slack
measurement every slack measurement period, which ends whenever
the number of memory requests serviced within it reaches the size
of the scheduling window. At the end of each slack measurement
period, the memory controller finds the least slack among the banks
and the bus. The memory controller adds the least slack amount to
the global DRAM slack counter Tiemory slack and resets the bus and
bank slack counters, starting a new period. From any cycle time ¢ we
can now calculate Tn‘}‘gr‘},ory using Equation 3.

3.3. Hardware Cost

Table 1 details the storage required by CRIT+BW. The additional
storage is only 1280 bits. The mechanism does not add any structures
or logic to the critical path of execution.

Frequency Front end 00O Core All Caches ICache DCache L2
Min 1.5 GHz Uops/cycle 4 Uops/cycle 4 Line size 64 B Size 32 KB 32KB 1MB
Max 4.5 GHz Branches/cycle 2 Pipe depth 14 MSHRs 32 Assoc. 4 4 8
Step 100 MHz BTB entries 4K ROB size 128 Repl. LRU Cycles 3 3 18

Predictor hybrid?® RS size 48 Ports 1IR/1TW 2R/1W 1

DRAM Controller Bus DDR3 SDRAM [28] Stream prefetcher [40]
Policy FR-FCFS [33] Freq. 800 MHz Chips 8x256 MB Row size 8 KB Streams 64 Distance 64
Window 32 requests Width 8B Banks 8 CASP 13.75 ns Queue 128 Degree 4
2 64K-entry gshare + 64K-entry PAs + 64K-entry selector.

b CAS =tgp = fRCD = CL; other modeled DDR3 constraints: CWL, I{RC, RAS, RTP, BL, CCD, RRD, FAW, WTR, WR} -
Table 2: Simulated processor configuration
4. Methodology Component Parameter Value
We compare energy saved by CRIT+BW to that of the state-of-the-art Chi @1.5 GHz @4.5 GHz
(leading loads and stall time) and to three kinds of potential energy P Static power (W) 9 28
savings (computed using offline DVFS policies). Before presenting Peak dynamic power (W) 2 58
the results, we justify our choice of energy as the efficiency met- Static power (W) 1
ric, describe our simulation methodology, explain how we compute A irecharge energ)(l @) 47&2
. . . . DRAM ctivate ener; J)
1 s h f hmarks. gy (P

potential energy savings, and discuss our choice of benchmarks Read eneray (pl) 1063
4.1. Efficiency Metric Write energy (pJ) 1071

Other Static power (W) 40

Our choice of efficiency metric is driven solely by the need to evaluate
DVFS performance predictors. As such, the efficiency metric must
be implementable by a simple DVFES controller (so that most of the
benefit comes from DVFS performance prediction) and must allow
comparisons to optimal results. Note that we are not evaluating the
usefulness of DVES itself.

We choose energy (or, equivalently,’performance per watt) by
eliminating the other metrics from the set of the four commonly used
ones: energy, energy delay product (EDP), energy delay-squared
product (ED?P), and execution time.

We eliminate EDP and ED?P because they complicate DVES
performance predictor evaluation by 1) requiring another predictor
in the DVFS controller, and 2) precluding comparisons to optimal
results. Specifically, these metrics have the undesirable property
that the optimal frequency for an execution interval depends on the
behavior of the rest of execution. Therefore, the DVFS controller
must keep track of past long-term application behavior and predict
future long-term application behavior in addition to short-term DVFES
performance prediction we are evaluating. The necessity of this
additional prediction makes it hard to isolate the benefits of DVFS
performance prediction in the results. This undesirable property also
makes simulating an oracle DVFS controller infeasible, precluding
comparisons to optimal results. Sazeides et al. [35] discuss these
issues in greater detail.

We eliminate execution time as not applicable to chip-level DVES.
In this scenario, optimizing execution time does not require a per-
formance prediction: the optimal frequency is simply the highest
frequency.

Therefore, of the four common efficiency metrics, only energy is
suitable for our evaluation.

4.2. Simulation Methodology

4.2.1. Timing Model. We use a cycle-accurate simulator of an x86
superscalar out-of-order processor. The simulator models port con-
tention, queuing effects, and bank conflicts throughout the cache

3Energy and performance per watt are equivalent in the sense that in any execution
interval, the same operating point is optimal for both metrics.

Table 3: Power parameters

hierarchy and includes a detailed DDR3 SDRAM model. Table 2

lists the baseline processor configuration.

4.2.2. Power Model. We model three major system power compo-

nents: chip power, DRAM power, and other power (fan, disk, etc.).
‘We model chip power using McPAT 0.8 [26] extended to support

DVFEFS. Specifically, to generate power results for a specific chip

frequency f, we:

. run McPAT with a reference voltage V{y and frequency fj,

. scale voltage using V = max(Viyin, f%Vo),

scale reported dynamic power using P = %CV2 f,and

. scale reported static power linearly with voltage [3].

We model DRAM power using CACTI 6.5 [30] and use a constant
static power as a proxy for the rest of system power.
Table 3 details the power parameters of the system.

4.2.3. DVFS Controller. Every 100K retired instructions, the DVFS

controller chooses a chip frequency for the next 100K instructions.*

Specifically, the controller chooses the frequency estimated to cause
the least system energy consumption. To estimate energy consump-
tion at a candidate frequency f while running at f;, the controller:

1. obtains measurements of

e execution time 7' (fp),

e chip static power Pehip static (f0)-

e chip dynamic power Pepip dynamic (f0)-

o DRAM static power PpraM static (0)»

o DRAM dynamic power PhraM dynamic(fo), and
e other system power Poper(fo)

4We chose 100K instructions because it is the smallest quantum for which the time to
change chip voltage (as low as tens of nanoseconds [21,22], translating to less than 1K
instructions) can be neglected.

for the previous 100K instructions from hardware performance
counters and power sensors,

2. obtains a prediction of execution time T'(f) for the next 100K in-
structions from the performance predictor (either leading loads,
stall time, or CRIT+BW),

3. calculates chip dynamic energy Echip dynamic(fo) and DRAM
dynamic energy Epram dynamic(fo) for the previous interval
using E = PT,

4. calculates Echip dynamic(f) by scaling Echip dynamic(fO) using
E=1cv?,

5. calculates FPehip static (f)= %Pchip static (fo) as in [3],

6. and finally calculates total estimated system energy

E(f) = Echip(f) + Epram(f) + Eother(f)
= Fchip static (f) X T(f) + Echip dynamic (f) +
PoraM static (f0) X T(f) + EDRAM dynamic (f) +
Pother (f0) X T (f).

To isolate the effect of DVFS performance predictor accuracy on
energy savings, we do not simulate delays associated with switch-
ing between frequencies. Accounting for these delays requires an
additional prediction of whether the benefits of switching outweigh
the cost. If the accuracy of that prediction is low, it could hide the
benefits of high performance prediction accuracy, and vice versa.

4.3. Offline Policies

We model three offline DVES controller policies: dynamic optimal,
static optimal, and perfect memoryless.

The dynamic optimal policy places a lower bound on energy con-
sumption. We compute this bound as follows:

1. run the benchmark under study at each chip frequency,

2. for each interval, find the minimum consumed energy across all
frequencies,

3. total the per-interval minimum energies.

The static optimal policy chooses the chip frequency that mini-
mizes energy consumed by the benchmark under study, subject to
the constraint that frequency must remain the same throughout the
run. The difference between dynamic and static optimal results yields
potential energy savings due to benchmark phase behavior.

The perfect memoryless policy simulates a perfect memoryless
performance predictor. We call a predictor memoryless if it assumes
that for each chip frequency, performance during the next interval
equals performance during the last interval. This assumption makes
sense for predictors that do not “remember” any state (other than the
measurements from the last interval); hence the name “memoryless.’
Note that all predictors discussed in this paper are memoryless. For
each execution interval, the perfect memoryless policy chooses the
chip frequency that would minimize energy consumption during the
previous interval.

The perfect memoryless policy provides a quasi-optimal® bound on
energy saved by memoryless predictors. A large difference between
dynamic optimal and perfect memoryless results indicates that a

1

>We call this bound guasi-optimal because an imperfect memoryless predictor may
actually save more energy than the perfect memoryless predictor if the optimal frequency
for the previous interval does not remain optimal in the next interval.

memoryless predictor cannot handle the frequency of phase changes
in the benchmark under study. Getting the most energy savings out
of such benchmarks may require “memoryful” predictors that can
detect and predict application phases.® We leave such predictors to
future work.

4.4. Benchmarks

We simulate SPEC 2006 benchmarks compiled using the GNU Com-
piler Collection version 4.3.6 with the -03 option. We run each
benchmark with the reference input set for 200M retired instructions
selected using Pinpoints [32].

4.4.1. Benchmark Classification. To simplify the analysis of the
results, we classify the benchmarks based on their memory intensity
and the number of prefetch requests they trigger. We define a bench-
mark as memory-intensive if it generates more than 3 last level cache
misses per thousand instructions (with no prefetching). We define
a benchmark as prefetch-heavy if it triggers more than 5 prefetch
requests per thousand instructions. The resulting benchmark classes
are the same across all simulated frequencies.

5. Results

We show results for two configurations: with prefetching turned off
and with a streaming prefetcher. In both cases, we show normalized
energy reduction relative to the energy consumed at 3.7 GHz, the
most energy-efficient static frequency across SPEC 2006 (which
happens to be the same for both cases).

Before analyzing the results, we first explain their presentation
using Figure 8 as an example. Note that, for each benchmark, the
figure shows five bars within a wide box. The height of the box
represents dynamic optimal energy reduction. Since no other DVFS
policy can save more energy than dynamic optimal, we can use this
box to bound the other five bars. The five bars inside the box represent
energy reduction due to 1) leading loads, 2) stall time, 3) CRIT+BW,
4) optimal static DVFS policy, and 5) perfect memoryless DVFS
policy. This plot design allows for easy comparisons of realized and
potential gains for each benchmark and simplifies comparison of
potential gains across benchmarks at the same time.

5.1. Realistic DRAM with No Prefetching

Figure 8 shows realized and potential energy savings across thir-
teen memory-intensive workloads. On average, CRIT+BW and stall
time realize 5.5% and 5.1% out of potential 7.1% energy savings,
whereas leading loads only realizes 3%. For completeness, Figure 9
shows energy savings for low memory intensity benchmarks (note
the difference in scale).

The subpar energy savings by leading loads are due to its constant
memory access latency approximation. As described in Section 2.2.1,
leading loads accumulates the latency of the first load in each cluster
of simultaneous memory requests to compute the memory compo-
nent Tiemory Of total execution time 7. It turns out that in such
clusters, the leading load latency is usually less than that of the other
requests. In fact, this is the case in all memory-intensive benchmarks
except 1libquantum and 1bm; in these eleven benchmarks the aver-
age leading load latency is only 74% of the average latency of the
other memory requests. This discrepancy is due to the fact that the
first memory request in a cluster is unlikely to contend with another
request for a DRAM bank, whereas the later requests in the cluster

6Section 6.3 describes related work on phase prediction.

Energy Reduction (%) Energy Reduction (%) Energy Reduction (%)

Energy Reduction (%)

Leading loads Stall time == CRIT+BW mm Static optimal &= Perfect memoryless ®8 Dynamic optimal [__]

20

15

5 S AC S + O 8 ©
© o K0 <© X o0 b e \C N\ o™ < NS 2
- 09?’6\ & e w%P’O o o «\39 h & ¥
W 9
Figure 8: Realized and optimal energy savings for memory-intensive benchmarks (no prefetching)
Leading loads Stall time == CRIT+BW mm Static optimal = Perfect memoryless B8 Dynamic optimal [___]

») o &8 A & o ¥ S S N N W xO o
‘\‘0@00 o © %60& \\6“0 o X\’L(’M X %(\aoﬁ“ S «z&“ 6@23 Qo*@ @\co\‘ o %“\e"’

® o ¢

Figure 9: Realized and optimal energy savings for non-memory-intensive benchmarks (no prefetching)

Leading loads Stall time == CRIT+BW mm Static optimal = Perfect memoryless B8 Dynamic optimal [___]
20

15

10

5

0

N 5 Q S o S + O &)

@ o N <© RS e A N \‘06‘ o ™
o e M RS & o
Figure 10: Realized and optimal energy savings for prefetch-heavy benchmarks

Leading loads Stall time == CRIT+BW == Static optimal == Perfect memoryless B Dynamic optimal |:|
6
5
4
3
2
1
0
-1
2
-3

PR\ S SR SO ¥ S S S U ST P S\ SR BRSO N
45*0% g\\ﬁyp Q?}\«oe“ o ¥ %60 ‘06\6\ o ‘(\16 ® &f:&cp %?’6\ ‘\% o Qo\‘ 0%\0\3 © %‘06

Figure 11: Realized and optimal energy savings for prefetch-light benchmarks

350

® Measured

'g 300 Predicted by:
; 250 — CRIT+BW
S T e leading loads and stall time
2 200 .
2 TG0 0%0¢0 ..
£ 150
5 Reference
a. point for
o 100 all three
g predictors
&= 50

0 -

0 100 200 300 400 500 600 700 800
Cycle time (ps)

Figure 12: Measured and predicted TPl on bwaves with streaming
prefetcher enabled

likely have to wait for the earlier ones to free up the DRAM banks.
This underestimate of Tinemory results in subpar energy savings, exem-
plified by bwaves and cactusADM on which leading loads actually
consumes more energy than the baseline.

The fact that stall time beats leading loads supports our original
argument that DVFS performance predictors must be designed for
and evaluated with a realistic memory system. Both our experiments
and prior work [12,20] show that when evaluated with a constant
access latency memory, leading loads saves more energy than stall
time. Evaluation of the two predictors with a realistic DRAM system,
however, shows this conclusion to be incorrect.

Note that CRIT+BW, the mechanism we derived from an abstract
view of execution in Section 3, outperforms stall time, a mechanism
based on a less precise view of execution, by a relatively small margin
(5.5% vs. 5.1% energy saved). It is unclear, however, whether the
approximations that make stall time work will hold in all configura-
tions.

5.2. Realistic DRAM with Stream Prefetching

Figure 10 shows realized and potential energy reduction across ten
prefetch-heavy benchmarks with a streaming prefetcher enabled. On
average, CRIT+BW realizes 5% out of potential 7.6% energy savings,
whereas stall time and leading loads only realize 1.8% and less
than 0.1%, respectively. For completeness, Figure 11 shows energy
savings for prefetch-light benchmarks (note the difference in scale).
5.2.1. Prediction Example. To provide insight into why CRIT+BW
bests the competition on prefetch-heavy workloads, we analyze per-
formance predictions generated by all three predictors for an interval
of bwaves, the prefetch-heavy benchmark we use to motivate the
limited bandwidth DVFS performance model in Section 3.2. Fig-
ure 12 contrasts the performance predictions generated by CRIT+BW,
leading loads, and stall time. In particular, the figure shows:

1. sixteen thick dots representing measured time per instruction
(TPI) at sixteen frequencies,

2. adashed line showing TPI predicted by both leading loads and
stall time while running at 1.9 GHz, and

3. asolid curve showing TPI predicted by CRIT+BW while run-
ning at 1.9 GHZ.

Note that all three predictions for low frequencies (right half of the
figure) are identical. The reason lies in the highly streaming nature
of bwaves that enables the prefetcher to eliminate all demand misses
in the interval. Therefore, all three predictors estimate the memory

20
S
< ® GemsFDTD
8 10
g o Dwaves
g (3 e -Jeslie3d
8 0 libquantum
& i ® sphinx3
B o M€ o omnetpp
N mcf
TEu -10 Ibm ® soplex
5
4

-20

-20 -10 0 10 20
Normalized Power A (%)

Figure 13: Performance delta versus power delta under DVFS with
CRIT+BW for prefetch-heavy benchmarks

component of execution time to be zero, predicting performance to
scale proportionately with frequency.

On the other hand, predictions for higher frequencies diverge;
CRIT+BW predicts that TPI saturates at 188 ps per instruction,
whereas leading loads and stall time still predict performance to
scale proportionally with frequency. Comparing the predictions to
measured TPI demonstrates that accounting for limited memory band-
width allows CRIT+BW to be more accurate than both leading loads
and stall time.

Due to this prediction inaccuracy, a DVFES controller using either

leading loads or stall time has to act on skewed estimates of energy
consumption at high frequencies. Specifically, the controller may
choose a high frequency and waste a lot of power for no performance
benefit, losing out on potential energy savings.
5.2.2. Power and Performance Tradeoff. Figure 13 details how
CRIT+BW trades off power and performance to reduce energy. The
figure plots performance delta versus power delta (normalized to
performance and power achieved at the baseline 3.7 GHz frequency).
The diagonal line consists of points where performance and power
deltas are equal, resulting in the same energy as the baseline.

CRIT+BW trades off power and performance differently across
workloads. On GemsFDTD, bwaves, and leslie, CRIT+BW spends
extra power for even more performance, while on 1bm, mcf, milc,
omnetpp, soplex, and sphinx3 CRIT+BW allows performance to
dip to save more power.

Note that CRIT+BW improves performance and saves power on
libquantum. CRIT+BW does so by exploiting 1ibquantum’s phase
behavior. In some phases, CRIT+BW spends extra power for more
performance; in others, it makes the opposite choice. On average,
both performance and power consumption improve.

5.3. Analysis of 1bm

With and without prefetching, 1bm stands out due to its large potential
energy savings which are not fully realized by CRIT+BW and the
other predictors. The reasons, however, are different for each case.

Without prefetching, the reason lies in the peculiar nature of the
benchmark. The majority (84%) of memory requests in 1bm are stores
and writebacks, which do not stall the processor. At high frequencies,
however, the load memory requests are more likely to contend with
these stores and writebacks for DRAM banks, taking more time to
complete and thus violating the linear DVFS performance model
assumption that Themory stays the same across frequencies. This
leads CRIT+BW (and the other predictors) to underestimate the
performance effect of memory at high frequencies.

With prefetching, the reason lies in the details of memory request
scheduling. At high frequencies, 1bm floods the memory system
with prefetches; this large number of memory requests allows the
memory controller to make better scheduling decisions and reduce
the number of row conflicts by up to 61%. The slack approach to
estimating T,;{gglory does not take this effect into account, resulting in

: min
an overestimate of Tiemory-

5.4. Summary

When evaluated on an out-of-order processor featuring a streaming
prefetcher and a realistic DRAM system, CRIT+BW realizes 65%
of dynamically optimal energy savings (75% of perfect memory-
less energy savings) across all SPEC 2006 workloads, compared to
only 34% (40%) for stall time and 12% (14%) for leading loads.

6. Related Work

To our knowledge, this paper is the first to propose a DVFES perfor-
mance predictor designed to work with a realistic DRAM system.
Specifically, our predictor addresses two characteristics of realistic
DRAM systems which make DVFS performance prediction difficult:
varying memory request latencies and prefetching, neither of which
are considered by the state-of-the-art [12, 20, 34].

We have already compared our predictor to leading loads and stall
time. Here we briefly discuss three major areas of related work:
performance and power prediction for DVFS, analytical performance
models, and phase prediction.

6.1. Performance and Power Prediction for DVFS

Most prior papers on DVFS performance and power prediction [5—
8, 10,25,29] address the problem above the microarchitectural level
and do not explore hardware modification. Hence, these approaches
can only use already existing hardware performance counters as
inputs to their performance and power models. These counters were
not designed to predict the performance impact of DVFES and thus
do not work well for that purpose. Hence, these papers resort to
statistical [5-8,25] and machine learning [10,29] techniques.

In contrast, we design new hardware counters with the explicit goal
of aiding DVFS performance prediction. This approach was intro-
duced by leading loads [12,20, 34] and stall time [12,20] proposals
and extended to power prediction by Spiliopoulos et al. [38].

The tradeoff between these two general approaches is as follows:
statistical and machine learning techniques are easier to apply to
complex prediction scenarios (e.g., per-core DVFS); however, our
approach of designing new hardware counters builds on an under-
standing of the underlying microarchitectural effects that ensures
robust predictions even for applications never seen before.

6.2. Analytical Performance Models

Traditional analytical performance models [4,11,13,14,19,27,31,37,
39] have a different purpose than the commonly used linear DVFS
performance model and our limited bandwidth DVFS performance
model. Specifically, traditional analytical models are used to gain
insight into the performance bottlenecks of modeled architectures
and drive design space exploration. These models are evaluated off-
line and target only a first order performance estimate. A DVFS
performance model, on the other hand, is an analytical performance
model evaluated at runtime by the operating system or the hardware
power management unit and has to be accurate to be useful.

6.3. Phase Prediction

Phase detection and prediction mechanisms [17,18,36,42] can help
improve DVFS performance prediction accuracy and hence the over-
all utility of DVFS. Specifically, a DVFS mechanism can benefit
from phase prediction by triggering re-training of the DVFES perfor-
mance predictor in the beginning of each phase, and switching to the
predicted optimal operating point for the rest of the phase.

7. Conclusions

We have shown that a DVFS performance predictor must be designed
with an accurate model of the memory system in mind.

We demonstrated quantitatively that previously proposed DVFS
performance predictors, designed with an over-simplified view of the
memory system (e.g., assuming a constant access latency or disregard-
ing prefetching), generate inaccurate performance predictions and
lose out on potential energy savings. In particular, we have shown
that the commonly used linear DVFS performance model breaks
down in the presence of prefetching because it does not account for
finite memory bandwidth.

To address these problems, we have 1) developed the limited
bandwidth DVFS performance model that takes memory bandwidth
into account, and 2) proposed CRIT+BW, a low cost mechanism
that accurately predicts the performance impact of frequency scaling
in the presence of a realistic memory system, realizing 65% of the
potential energy savings.

Acknowledgments

We thank Onur Mutlu, members of the HPS research group, our
shepherd Lieven Eeckhout, and the anonymous reviewers for their
comments and suggestions. We thank Rafael Ubal and other devel-
opers of Multi2Sim [41], from which we adapted the x86 functional
model that drives our performance simulator. We gratefully acknowl-
edge the support of the Cockrell Foundation and Intel Corporation.

References

[1] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS micropro-
cessor design,” in Proc. 28th Hawaii Int. Conf. Syst. Sci. (HICCS-28),
vol. 1, Jan. 1995, pp. 288-297.

[2] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas, “Bulldozer: An
approach to multithreaded compute performance,” IEEE Micro, vol. 31,
no. 2, pp. 615, Mar. 2011.

[3] J. A. Butts and G. S. Sohi, “A static power model for architects,” in Proc.
33rd ACM/IEEE Int. Symp. Microarchitecture (MICRO-33), Dec. 2000,
pp. 191-201.

[4] X.E. Chen and T. M. Aamodt, “Hybrid analytical modeling of pending
cache hits, data prefetching, and MSHRS,” in Proc. 41st ACM/IEEE Int.
Symp. Microarchitecture (MICRO-41), Nov. 2008, pp. 59-70.

[5] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance trade-off based
on the ratio of off-chip access to on-chip computation times,” in Proc.
Conf. Design, Automation, and Test in Europe (DATE 2004), vol. 1, Feb.
2004, pp. 4-9.

[6] G. Contreras and M. Martonosi, “Power prediction for Intel XScale
processors using performance monitoring unit events,” in Proc. 2005
Int. Symp. Low Power Electron. and Design (ISLPED’05), Aug. 2005,
pp. 221-226.

[7] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-
los, “Online power-performance adaptation of multithreaded programs
using hardware event-based prediction,” in Proc. 20th Int. Conf. Su-
percomputing (ICS’06), Cairns, Queensland, Australia, Jun. 2006, pp.
157-166.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R.
de Supinski, and M. Schulz, “Prediction models for multi-dimensional
power-performance optimization on many cores,” in Proc. 17th Int. Conf.
Farallel Arch. and Compilation Techniques (PACT’08), Oct. 2008, pp.
250-259.

H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Mem-
ory power management via dynamic voltage/frequency scaling,” in Proc.
8th ACM Int. Conf. Autonomic Computing (ICAC 2011), Jun. 2011, pp.
31-40.

G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling for
multi-tasking systems using online learning,” in Proc. 2007 Int. Symp.
Low Power Electron. and Design (ISLPED’07), Aug. 2007, pp. 207-212.
P. G. Emma and E. S. Davidson, “Characterization of branch and data
dependencies in programs for evaluating pipeline performance,” IEEE
Trans. Comput. (TOC), vol. C-36, no. 7, pp. 859-875, Jul. 1987.

S. Eyerman and L. Eeckhout, “A counter architecture for online DVFS
profitability estimation,” IEEE Trans. Comput. (TOC), vol. 59, pp. 1576—
1583, Nov. 2010.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst. (TOCS), vol. 27, pp. 3:1-3:37, May 2009.

A. Hartstein and T. R. Puzak, “The optimum pipeline depth considering
both power and performance,” ACM Trans. Arch. and Code Optimiz.
(TACO), vol. 1, pp. 369-388, Dec. 2004.

M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital de-
sign,” in IEEE Symp. Low Power Electron. (ISLPE’94) Digest of Tech.
Papers, Oct. 1994, pp. 8-11.

Intel 64 and IA-32 Architectures Optimization Reference Manual Ver-
sion 026, Intel Corporation, April 2012.

C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitor-
ing and prediction on real systems with application to dynamic power
management,” in Proc. 39th ACM/IEEE Int. Symp. Microarchitecture
(MICRO-39), Dec. 2006, pp. 359-370.

C. Isci and M. Martonosi, “Phase characterization for power: Evaluating
control-flow-based and event-counter-based techniques,” in Proc. 12th
IEEE Int. Symp. High Perf. Comput. Arch. (HPCA-12), Feb. 2006, pp.
121-132.

T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in Proc. 31th Int. Symp. Comput. Arch. (ISCA 2004), Jun. 2004,
pp. 338-349.

G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-based models
for run-time DVFS orchestration in superscalar processors,” in Proc.
ACM Int. Conf. Computing Frontiers (CF’10), May 2010, pp. 287-296.
W. Kim, D. Brooks, and G.-Y. Wei, “A fully-integrated 3-level DC-DC
converter for nanosecond-scale DVFS,” IEEE J. Solid-State Circuits
(JSSC), vol. 47, no. 1, pp. 206-219, Jan. 2012.

W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core DVFS using on-chip switching regulators,” in Proc.
14th IEEE Int. Symp. High Perf. Comput. Arch. (HPCA-14), Feb. 2008,
pp. 123-134.

R. Kumar and G. Hinton, “A family of 45nm IA processors,” in 2009
IEEE Int. Solid-State Circuits Conf. (ISSCC 2009) Digest Tech. Papers,
Feb. 2009, pp. 58-59.

H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM
POWERG microarchitecture,” IBM J. of Research and Develop., vol. 51,
no. 6, pp. 639-662, Nov. 2007.

S.J. Lee, H.-K. Lee, and P.-C. Yew, “Runtime performance projection
model for dynamic power management,” in Advances in Comput. Syst.
Arch. 12th Asia-Pacific Conf. (ACSAC 2007) Proc., ser. Lecture Notes
in Computer Science, Aug. 2007, vol. 4697, pp. 186-197.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
ACM/IEEE Int. Symp. Microarchitecture (MICRO-42), Dec. 2009, pp.
469-480.

P. Michaud, A. Seznec, and S. Jourdan, “Exploring instruction-fetch
bandwidth requirement in wide-issue superscalar processors,” in Proc.
1999 Int. Conf. Parallel Arch. and Compilation Techniques (PACT’99),
Oct. 1999, pp. 2-10.

MT41J512M4 DDR3 SDRAM Datasheet Rev. K, Micron Technology,

Inc., Apr. 2010, http://download.micron.com/pdf/datasheets/dram/ddr3/
2Gb_DDR3_SDRAM.pdf.

M. Moeng and R. Melhem, “Applying statistical machine learning to
multicore voltage and frequency scaling,” in Proc. ACM Int. Conf. Com-
puting Frontiers (CF’10), May 2010, pp. 277-286.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP Laboratories, Tech. Rep. HPL-2009-
85, Apr. 2009.

D. B. Noonburg and J. P. Shen, “Theoretical modeling of superscalar
processor performance,” in Proc. 27th ACM/IEEE Int. Symp. Microar-
chitecture (MICRO-27), Nov. 1994, pp. 52-62.

H. Patil, R. S. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing representative portions of large Intel Ita-
nium programs with dynamic instrumentation,” in Proc. 37th ACM/IEEE
Int. Symp. Microarchitecture (MICRO-37), Dec. 2004, pp. 81-92.

S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proc. 27th Int. Symp. Comput. Arch.
(ISCA 2000), Jun. 2000, pp. 128-138.

B. Rountree, D. K. Lowenthal, M. Schulz, and B. R. de Supinski, “Prac-
tical performance prediction under dynamic voltage frequency scaling,”
in 2011 Int. Green Computing Conf. and Workshops (IGCC’11), Jul.
2011.

Y. Sazeides, R. Kumar, D. M. Tullsen, and T. Constantinou, “The danger
of interval-based power efficiency metrics: When worst is best,” Comp.
Arch. Lett. (CAL), vol. 4, no. 1, Jan. 2005.

T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in
Proc. 30th Int. Symp. Comput. Arch. (ISCA 2003), San Diego, California,
Jun. 2003, pp. 336-347.

D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vemon, and D. A. Wood,
“Analytic evaluation of shared-memory systems with ILP processors,”
in Proc. 25th Int. Symp. Comput. Arch. (ISCA 1998), Jun. 1998, pp.
380-391.

V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green governors:
A framework for continuously adaptive DVFS,” in 2011 Int. Green
Computing Conf. and Workshops (IGCC’11), Jul. 2011.

E. Sprangle and D. Carmean, “Increasing processor performance by
implementing deeper pipelines,” in Proc. 29th Int. Symp. Comput. Arch.
(ISCA 2002), Jun. 2002, pp. 25-34.

J. Tendler, J. S. Dodson, J. S. Fields Jr., L. Hung, and B. Sinharoy,
“POWERA4 system microarchitecture,” IBM J. of Research and Develop.,
vol. 46, pp. 5-25, Oct. 2001.

R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A sim-
ulation framework for CPU-GPU computing,” in Proc. 21st Int. Conf.
Parallel Arch. and Compilation Techniques (PACT’12), Sep. 2012, pp.
335-344.

F. Vandeputte, L. Eeckhout, and K. De Bosschere, “A detailed study on
phase predictors,” in Proc. 11th Int. Euro-Par Conf. Parallel Process.
(Euro-Par 2005), Aug. 2005, pp. 571-581.

