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Abstract—Indirect branches have become increasingly common in modular programs written in modern object-oriented languages

and virtual-machine-based runtime systems. Unfortunately, the prediction accuracy of indirect branches has not improved as much as

that of conditional branches. Furthermore, previously proposed indirect branch predictors usually require a significant amount of extra

hardware storage and complexity, which makes them less attractive to implement. This paper proposes a new technique for handling

indirect branches, called Virtual Program Counter (VPC) prediction. The key idea of VPC prediction is to use the existing conditional

branch prediction hardware to predict indirect branch targets, avoiding the need for a separate storage structure. Our comprehensive

evaluation shows that VPC prediction improves average performance by 26.7 percent and reduces average energy consumption by

19 percent compared to a commonly used branch target buffer based predictor on 12 indirect branch intensive C/Cþþ applications.

Moreover, VPC prediction improves the average performance of the full set of object-oriented Java DaCapo applications by

21.9 percent, while reducing their average energy consumption by 22 percent. We show that VPC prediction can be used with any

existing conditional branch prediction mechanism and that the accuracy of VPC prediction improves when a more accurate conditional

branch predictor is used.

Index Terms—Indirect branch prediction, virtual functions, devirtualization, object-oriented languages, Java.
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1 INTRODUCTION

OBJECT-ORIENTED programs are becoming more common
as more programs are written in modern high-level

languages such as Java, Cþþ, and C#. These languages
support polymorphism [8], which significantly eases the
development and maintenance of large modular software
projects. To support polymorphism, modern languages
include dynamically dispatched function calls (i.e., virtual
functions) whose targets are not known until runtime
because they depend on the dynamic type of the object on
which the function is called. Virtual function calls are
usually implemented using indirect branch/call instruc-
tions in the instruction set architecture. Previous research
has shown that modern object-oriented languages result in
significantly more indirect branches than traditional C and
Fortran languages [7]. Unfortunately, an indirect branch

instruction is more costly on processor performance
because predicting an indirect branch is more difficult than
predicting a conditional branch as it requires the prediction
of the target address instead of the prediction of the branch
direction. Direction prediction is inherently simpler because
it is a binary decision as the branch direction can take only
two values (taken or not-taken), whereas indirect target
prediction is an N-ary decision where N is the number of
possible target addresses. Hence, with the increased use of
object-oriented languages, indirect branch target mispredic-
tions have become an important performance limiter in
high-performance processors.1 Moreover, the lack of effi-
cient architectural support to accurately predict indirect
branches has resulted in an increased performance differ-
ence between programs written in object-oriented lan-
guages and programs written in traditional languages,
thereby rendering the benefits of object-oriented languages
unusable by many software developers who are primarily
concerned with the performance of their code [50].

Fig. 1 shows the number and fraction of indirect branch

mispredictions per 1000 retired instructions (MPKI) in

different Windows applications run on an Intel Core Duo

T2500 processor [26] which includes a specialized indirect

branch predictor [20]. The data are collected with hardware

performance counters using VTune [27]. In the examined

Windows applications, on average 28 percent of the branch
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1. In the rest of this paper, an “indirect branch” refers to a nonreturn
unconditional branch instruction whose target is determined by reading a
general-purpose register or a memory location. We do not consider return
instructions since they are usually very easy to predict using a hardware
return address stack [32].
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mispredictions are due to indirect branches. In two
programs, Virtutech Simics [39] and Microsoft Excel 2003,
almost half of the branch mispredictions are caused by
indirect branches. These results show that indirect branches
cause a considerable fraction of all mispredictions even in
today’s relatively small-scale desktop applications.

Previously proposed indirect branch prediction techni-
ques [10], [12], [33], [13], [14], [47] require large hardware
resources to store the target addresses of indirect branches.
For example, a 1,024-entry gshare conditional branch pre-
dictor [41] requires only 2,048 bits but a 1,024-entry gshare-
like indirect branch predictor (tagged target cache [10]) needs
at least 2,048 bytes along with additional tag storage even if
the processor stores only the least significant 16 bits of an
indirect branch target address in each entry.2 As such a large
hardware storage comes with an expensive increase in
power/energy consumption and complexity, most current
high-performance processors do not dedicate separate hard-
ware but instead use the branch target buffer (BTB) to predict
indirect branches [1], [22], [34]. The BTB implicitly—and
usually inaccurately—assumes that the indirect branch will
jump to the same target address it jumped to in its previous
execution [10], [33].3 To our knowledge, only Intel PentiumM
andAMDBarcelona implement specializedhardware to help
the prediction of indirect branches [20], [2], demonstrating
that hardware designers are increasingly concerned with the
performance impact of indirect branches. However, as we
showed inFig. 1, evenonaprocessorbasedon thePentiumM,
indirect branch mispredictions are still relatively frequent.

In order to efficiently support polymorphism in object-
oriented languages without significantly increasing com-
plexity in theprocessor front-end, a simple and low-cost—yet
effective—indirect branch predictor is necessary. A current
high-performance processor already employs a large and
accurate conditional branch predictor. Our goal is to use this
existing conditional branch prediction hardware to also
predict indirect branches instead of building separate, costly
indirect branch prediction structures.

We propose a new indirect branch prediction algorithm:
Virtual Program Counter (VPC) prediction. A VPC predictor
treats a single indirect branch as if it were multiple
conditional branches for prediction purposes only. That is,
the code has the single indirect branch. But the hardware
branch predictor treats it in the hardware for prediction
purposes only as a sequence of conditional branch instruc-
tions. These conditional branch instructions do not exist in
software. They are part of the hardware branch prediction
mechanism. Ergo, we call them virtual branches.

Conceptually, each virtual branch has its own unique
target address, and the target address is stored in the BTB
with a unique “fake” PC, which we call the virtual PC. The
processor uses the outcome of the existing conditional
branch predictor to predict each virtual branch. The
processor accesses the conditional branch predictor and
the BTB with the virtual PC of the virtual branch. If the
predictor returns “taken,” the target address provided by
the BTB is predicted as the target of the indirect branch. If
the predictor returns “not-taken,” the processor moves on
to the next virtual branch in the sequence.4

The processor repeats this process until the conditional
branch predictor predicts a virtual branch as taken. VPC
prediction stops if none of the virtual branches is predicted
as taken after a limited number of virtual branch predic-
tions. After VPC prediction stops, the processor can stall the
front-end until the target address of the indirect branch is
resolved. Our results in Section 5.2 show that the number of
iterations needed to generate a correct target prediction is
actually small: 45 percent of the correct predictions occur in
the first virtual branch and 81 percent of the correct
predictions occur within the first three virtual branches.

The VPC prediction algorithm is inspired by a compiler
optimization, called receiver class prediction optimization
(RCPO) [11], [24], [21], [6] or devirtualization [28]. This
optimization statically converts an indirect branch to
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2. With a 64-bit address space, a conventional indirect branch predictor
likely requires even more hardware resources to store the target
addresses [33].

3. Previous research has shown that the prediction accuracy of a BTB-
based indirect branch predictor, which is essentially a last-target predictor,
is low (about 50 percent) because the target addresses of many indirect
branches alternate rather than stay stable for long periods of time [10], [33].

4. Since we are using the outcomes of the existing conditional branch
predictor to predict indirect branches, we refer to the two outcomes of the
predictor as “taken” and “not-taken.” However, what we mean by “not-
taken” when we are processing indirect branches is not “take the fall
through path in the actual code” as is the case for real conditional branches.
What we mean is “process the next virtual branch in our sequence of virtual
branches that collectively represent the indirect branch.” In other words,
update the branch history, and make another pass at the conditional
branch predictor.

Fig. 1. Indirect branch mispredictions in Windows applications: (a) MPKI and (b) percent of mispredictions due to indirect branches.



multiple direct conditional branches (in other words, it
“devirtualizes” a virtual function call). Unfortunately, devir-
tualization requires extensive static program analysis or
accurate profiling, and it is applicable to only a subset of
indirect brancheswith a limited number of targets that can be
determined statically [28]. Our proposed VPC prediction
mechanism provides the benefit of using conditional branch
predictors for indirect branches without requiring static
analysis or profiling by the compiler. In other words,
VPC prediction dynamically devirtualizes an indirect branch
without compiler support. Unlike compiler-based devirtua-
lization, VPC prediction can be applied to any indirect branch

regardless of the number and locations of its targets.
Contributions. The contributions of this paper are

as follows:

1. To our knowledge, VPC prediction is the first
mechanism that uses the existing conditional branch
prediction hardware to predict the targets of indirect
branches, without requiring any program transfor-
mation or compiler support.

2. VPC prediction can be applied using any current as
well as future conditional branch prediction algo-
rithm without requiring changes to the conditional
branch prediction algorithm. Since VPC prediction
transforms the problem of indirect branch prediction
into the prediction of multiple virtual conditional
branches, future improvements in conditional branch
prediction accuracy can implicitly result in improv-
ing the accuracy of indirect branch prediction.

3. Unlike previously proposed indirect branch predic-
tion schemes, VPC prediction does not require extra
storage structures to maintain the targets of indirect
branches. Therefore, VPC prediction provides a low-
cost indirect branch prediction scheme that does not
significantly complicate the front-end of the proces-
sor while providing the same performance as more
complicated indirect branch predictors that require
significant amounts of storage.

4. We comprehensively evaluate the performance and
energy consumption of VPC prediction on both
traditional C/C++ and modern object-oriented Java
applications. Our results show that VPC prediction
provides significant performance and energy im-
provements, increasing average performance by
26.7 percent/21.9 percent and decreasing energy
consumption by 19 percent/22 percent, respectively,
for 12 C/C++ and 11 Java applications. We find that
the effectiveness of VPC prediction improves as the
baseline BTB size and conditional branch prediction
accuracy increase.

2 BACKGROUND

We first provide a brief background on how indirect branch
predictors work to motivate the similarity between indirect
and conditional branch prediction. There are two types of
indirect branch predictors: history based and precomputa-
tion based [46]. The technique we introduce in this paper
utilizes history information, so we focus on history-based
indirect branch predictors.

2.1 Why Does History-Based Indirect Branch
Prediction Work?

History-based indirect branch predictors exploit informa-
tion about the control flow followed by the executing
program to differentiate between the targets of an indirect
branch. The insight is that the control-flow path leading to
an indirect branch is strongly correlated with the target of
the indirect branch [10]. This is very similar to modern
conditional branch predictors, which operate on the
observation that the control-flow path leading to a branch
is correlated with the direction of the branch [16].

2.1.1 A Source Code Example

The example in Fig. 2 shows an indirect branch from the
GAP program [17] to provide insight into why history-
based prediction of indirect branch targets works.
GAP implements and interprets a language that performs
mathematical operations. One data structure in the
GAP language is a list. When a mathematical function is
applied to a list element, the program first evaluates the
value of the index of the element in the list (line 13 in Fig. 2).
The index can be expressed in many different data types,
and a different function is called to evaluate the index value
based on the data type (line 10). For example, in expressions
L(1), L(n), and L(nþ1), the index is of three different data
types: T_INT, T_VAR, and T_SUM, respectively. An
indirect jump through a jump table (EvTab in lines 2, 3,
and 10) determines which evaluation function is called
based on the data type of the index. Consider the
mathematical function L2(n) ¼ L1(n) þ L1(nþ1). For each
n, the program calculates three index values for L1(n),
L1(nþ1), and L2(n) by calling the Eval_VAR, Eval_SUM,
and Eval_VAR functions, respectively. The targets of the
indirect branch that determines the evaluation function of
the index are therefore respectively the addresses of the two
evaluation functions. Hence, the target of this indirect
branch alternates between the two functions, making it
unpredictable with a BTB-based last-target predictor. In
contrast, a predictor that uses branch history information to
predict the target easily distinguishes between the two
target addresses because the branch histories followed in
the functions Eval_SUM and Eval_VAR are different;
hence, the histories leading into the next instance of the
indirect branch used to evaluate the index of the element
are different. Note that a combination of the regularity
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Fig. 2. An indirect branch example from GAP.



in the input index expressions and the code structure allows
the target address to be predictable using branch history
information.

2.2 Previous Work on Indirect Branch Prediction

The indirect branch predictor described by Lee and Smith
[37] used the BTB to predict indirect branches. This scheme
predicts that the target of the current instance of the branch
will be the same as the target taken in the last execution of
the branch. This scheme does not work well for indirect
branches that frequently switch between different target
addresses. Such indirect branches are commonly used to
implement virtual function calls that act on objects of
different classes and switch statements with many “case”
targets that are exercised at runtime. Therefore, the BTB-
based predictor has low (about 50 percent) prediction
accuracy [37], [10], [12], [33].

Chang et al. [10] first proposed to use branch history
information to distinguish between different target ad-
dresses accessed by the same indirect branch. They
proposed the “target cache,” which is similar to a two-level
gshare [41] conditional branch predictor. The target cache is
indexed using the XOR of the indirect branch PC and the
branch history register. Each cache entry contains a target
address. Each entry can be tagged, which reduces inter-
ference between different indirect branches. The tagged
target cache significantly improves indirect branch predic-
tion accuracy compared to a BTB-based predictor. How-
ever, it also requires separate structures for predicting
indirect branches, increasing complexity in the processor
front end.

Later work on indirect branch prediction by Driesen and
Hölzle focused on improving the prediction accuracy by
enhancing the indexing functions of two-level predictors
[12] and by combining multiple indirect branch predictors
using a cascaded predictor [13], [14]. The cascaded
predictor is a hybrid of two or more target predictors. A
relatively simple first-stage predictor is used to predict
easy-to-predict (single-target) indirect branches, whereas a
complex second-stage predictor is used to predict hard-to-
predict indirect branches. Driesen and Hölzle [14] con-
cluded that a three-stage cascaded predictor performed the
best for a particular set of C and Cþþ benchmarks.

Kalamatianos and Kaeli [33] proposed predicting indir-
ect branches via data compression. Their predictor uses
prediction by partial matching (PPM) with a set of
Markov predictors of decreasing size indexed by the result
of hashing a decreasing number of bits from previous
targets. The Markov predictor is a large set of tables where
each table entry contains a single target address and
bookkeeping bits. Similarly to a cascaded predictor, the
prediction comes from the highest order table that can
predict. The PPM predictor requires significant additional
hardware complexity in the indexing functions, Markov
tables, and additional muxes used to select the predicted
target address.

In a recent work, Seznec and Michaud [47] proposed
extending their TAGE conditional branch predictor to also
predict indirect branches. Their mechanism (ITTAGE) uses
a tagless base predictor and a number of tagged tables (four
or seven in the paper) indexed by an increasingly long

history. The predicted target comes from the component
with longer history that has a hit. This mechanism is
conceptually similar to a multistage cascaded predictor
with geometric history lengths, and therefore, it also
requires significant additional storage space for indirect
target addresses and significant complexity to handle
indirect branches.

2.3 Our Motivation

All previously proposed indirect branch predictors (except
the BTB-based predictor) require separate hardware struc-
tures to store target addresses in addition to the conditional
branch prediction hardware. This not only requires sig-
nificant die area (which translates into extra energy/power
consumption), but also increases the design complexity of
the processor front-end, which is already a complex and
cycle-critical part of the design.5 Moreover, many of the
previously proposed indirect branch predictors are them-
selves complicated [13], [14], [33], [47], which further
increases the overall complexity and development time of
the design. For these reasons, most current processors do
not implement separate structures to predict indirect
branch targets.

Our goal in this paper is to design a low-cost technique that
accurately predicts indirect branch targets (by utilizing branch
history information to distinguish between the different target
addresses of a branch) without requiring separate complex
structures for indirect branch prediction. To this end, we
propose Virtual Program Counter (VPC) prediction.

3 VIRTUAL PROGRAM COUNTER (VPC)
PREDICTION

3.1 Overview

A VPC predictor treats an indirect branch as a sequence of
multiple conditional branches, called virtual branches. A
“virtual branch” is conceptually a conditional branch that is
visible only to the processor’s branch prediction structures.
As such, it is different from a “real” conditional branch; it
does not affect program behavior, it is not part of the
program binary, and it is only used by the VPC predictor.
Each virtual branch is predicted in sequence using the
existing conditional branch prediction hardware, which
consists of the direction predictor and the BTB (Fig. 3). If the
direction predictor predicts the virtual branch as not-taken,
the VPC predictor moves on to predict the next virtual
branch in the sequence. If the direction predictor predicts
the virtual branch as taken, VPC prediction uses the target
associated with the virtual branch in the BTB as the next
fetch address, completing the prediction of the indirect
branch.

3.2 Prediction Algorithm

The detailed VPC prediction algorithm is shown in
Algorithm 1. The key implementation issue in VPC prediction
is how to distinguish between different virtual branches. Each
virtual branch should access a different location in the direction

1156 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

5. Using a separate predictor for indirect branch targets adds one more
input to the mux that determines the predicted next fetch address.
Increasing the delay of this mux can result in increased cycle time,
adversely affecting the clock frequency.



predictor and the BTB (so that a separate direction and target
prediction can be made for each branch). To accomplish this, the
VPC predictor accesses the conditional branch prediction
structures with a different virtual PC address (VPCA) and a
virtual global history register value (VGHR) for each virtual
branch. VPCA values are distinct for different virtual
branches. VGHR values provide the context (branch
history) information associated with each virtual branch.

VPC prediction is an iterative prediction process, where
each iteration takes one cycle. In the first iteration (i.e., for
the first virtual branch), VPCA is the same as the original
PC address of the indirect branch and VGHR is the same as
the GHR value when the indirect branch is fetched. If the
virtual branch is predicted not-taken, the prediction algo-
rithm moves to the next iteration (i.e., the next virtual
branch) by updating the VPCA and VGHR. The VPCA value
for an iteration (other than the first iteration) is computed by
hashing the original PC value with a randomized constant
value that is specific to the iteration. In other words,
V PCA ¼ PC �HASHVAL½iter�, where HASHVAL is a
hard-coded hardware table of randomized numbers that
are different from one another. The VGHR is simply left-
shifted by one bit at the end of each iteration to indicate that
the last virtual branch was predicted not-taken.6 Note that in
the first iteration, the processor does not even know that the
fetched instruction is an indirect branch. This is determined
only after the BTB access. If the BTB access is a hit, the
BTB entry provides the type of the branch. VPC prediction
algorithm continues iterating only if all of the following
three conditions are satisfied: 1) the first iteration hits in the
BTB, 2) the branch type indicated by the BTB entry is an
indirect branch, and 3) the prediction outcome of the first
iteration is not-taken. The iterative prediction process stops
when a virtual branch is predicted to be taken. Otherwise,
the prediction process iterates until either the number of

iterations is greater than MAX_ITER or there is a BTB miss
(!pred target in Algorithm 1 means there is a BTB miss).7 If
the prediction process stops without predicting a target, the
processor stalls until the indirect branch is resolved. Our
results in Section 5.2 show that 81 percent of the correct
predictions happen in the first three iterations.

Note that the value of MAX_ITER determines how many
attempts will be made to predict an indirect branch. It also
dictates how many different target addresses can be stored
for an indirect branch at a given time in the BTB.

3.2.1 Prediction Example

Figs. 4a and 4b show an example virtual function call and
the corresponding simplified assembly code with an
indirect branch. Fig. 4c shows the virtual conditional
branches corresponding to the indirect branch. Even though
the static assembly code has only one indirect branch, the
VPC predictor treats the indirect branch as multiple
conditional branches that have different targets and VPCAs.
Note that the hardware does not actually generate multiple
conditional branches. The instructions in Fig. 4c are shown
to demonstrate VPC prediction conceptually. We assume,
for this example, that MAX_ITER is 3, so there are only
three virtual conditional branches.

Algorithm 1. VPC prediction algorithm

iter 1

V PCA PC

VGHR GHR

done FALSE

while (!done) do

pred target access_BTB(V PCA)

pred dir access_conditional_BP(V PCA, VGHR)

if (pred target andðpred dir ¼ TAKENÞ) then
next PC  pred target

done TRUE

else if (!pred target orðiter �MAX ITERÞ) then
STALL TRUE

done TRUE

end if

V PCA Hash(PC, iter)

VGHR Left-Shift(VGHR)

iter++

end while

Table 1 demonstrates five possible cases when the
indirect branch in Fig. 4 is predicted using VPC prediction,
by showing the inputs and outputs of the VPC predictor in
each iteration. We assume that the GHR is 1111 when the
indirect branch is fetched. Cases 1, 2, and 3 correspond to
cases where, respectively, the first, second, or third virtual
branch is predicted taken by the conditional branch
direction predictor (BP). As VPC prediction iterates,
VPCA and VGHR values are updated as shown in the
table. Case 4 corresponds to the case where all three of the
virtual branches are predicted not-taken, and therefore,
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Fig. 3. High-level conceptual overview of the VPC predictor.

6. Note that VPC addresses (VPCAs) can conflict with real PC addresses
in the program, thereby increasing aliasing and contention in the BTB and
the direction prediction structures. The processor does not require any
special action when aliasing happens. To reduce such aliasing, the
processor designer should: 1) provide a good randomizing hashing function
and values to generate VPCAs and 2) codesign the VPC prediction scheme
and the conditional branch prediction structures carefully to minimize the
effects of aliasing. Conventional techniques proposed to reduce aliasing in
conditional branch predictors [41], [9] can also be used to reduce aliasing
due to VPC prediction. However, our experimental results in [35,
Section 5.5] and in Section 7.5 show that the negative effect of VPC
prediction on the BTB miss rate and conditional branch misprediction rate
is tolerable.

7. The VPC predictor can continue iterating the prediction process even
if there is a BTB miss. However, we found that continuing in this case does
not improve the prediction accuracy. Hence, to simplify the prediction
process, our VPC predictor design stops the prediction process when there
is a BTB miss in any iteration.



the outcome of the VPC predictor is a stall. Case 5

corresponds to a BTB miss for the second virtual branch

and thus also results in a stall.

3.3 Training Algorithm

The VPC predictor is trained when an indirect branch is

committed. The detailed VPC training algorithm is shown

in Algorithms 2 and 3. Algorithm 2 is used when the

VPC prediction was correct and Algorithm 3 is used when

the VPC prediction was incorrect. The VPC predictor trains

both the BTB and the conditional branch direction predictor

for each predicted virtual branch. The key functions of the

training algorithm are:

1. to update the direction predictor as not-taken for the

virtual branches that have the wrong target (because

the targets of those branches were not taken) and to

update it as taken for the virtual branch, if any, that

has the correct target;
2. to update the replacement policy bits of the correct

target in the BTB (if the correct target exists in the

BTB);
3. to insert the correct target address into the BTB (if

the correct target does not exist in the BTB).

Like prediction, training is also an iterative process. To

facilitate training on a correct prediction, an indirect branch

carries with it through the pipeline the number of iterations

performed to predict the branch (predicted iter). VPCA and

VGHR values for each training iteration are recalculated

exactly the same way as in the prediction algorithm. Note

that only one virtual branch trains the prediction structures

in a given cycle.8

3.3.1 Training on a Correct Prediction

If the predicted target for an indirect branch was correct, all

virtual branches except for the last one (i.e., the one that has

the correct target) train the direction predictor as not-taken

(as shown in Algorithm 2). The last virtual branch trains the

conditional branch predictor as taken and updates the

replacement policy bits in the BTB entry corresponding to

the correctly predicted target address. Note that Algorithm 2

is a special case of Algorithm 3 in that it is optimized to

eliminate unnecessary BTB accesses when the target

prediction is correct.

Algorithm 2. VPC training algorithm when the branch

target is correctly predicted. Inputs: predicted_iter, PC, GHR

iter 1

V PCA PC

VGHR GHR

while (iter < predicted iter) do

if (iter = predicted iter) then

update_conditional_BP(V PCA, VGHR, TAKEN)

update_replacement_BTB(V PCA)

else

update_conditional_BP(V PCA, VGHR, NOT-TAKEN)

end if

V PCA Hash(PC, iter)
VGHR Left-Shift(VGHR)

iter++

end while

3.3.2 Training on a Wrong Prediction

If the predicted target for an indirect branch was wrong,

there are twomisprediction cases: 1)Wrong-target: One of the

virtual branches has the correct target stored in the BTB but

the direction predictor predicted that branch as not-taken;

2) No-target: none of the virtual branches has the correct

target stored in the BTB, so the VPC predictor could not have

predicted the correct target. In the no-target case, the correct

target address needs to be inserted into the BTB.
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Fig. 4. VPC prediction example: source, assembly, and the corresponding virtual branches.

TABLE 1
Possible VPC Predictor States and Outcomes When Branch in Fig. 4b is Predicted

8. It is possible to have more than one virtual branch update the
prediction structures by increasing the number of write ports in the BTB
and the direction predictor. We do not pursue this option as it would
increase the complexity of prediction structures.



Algorithm 3.VPC training algorithmwhen the branch target
is mispredicted. Inputs: PC, GHR, CORRECT_TARGET

iter 1

V PCA PC

VGHR GHR

found correct target FALSE

while ((iter �MAX ITER) and (found correct target ¼
FALSE)) do

pred target access_BTB(V PCA)
if (pred target = CORRECT_TARGET) then

update_conditional_BP(V PCA, VGHR, TAKEN)

update_replacement_BTB(V PCA)

found correct target TRUE

else if (pred target) then

update_conditional_BP(V PCA, VGHR, NOT-TAKEN)

end if

V PCA Hash(PC, iter)
VGHR Left-Shift(VGHR)

iter++

end while

/* no-target case */

if (found correct target ¼ FALSE) then

V PCA VPCA corresponding to the virtual branch

with a BTB-Miss or Least-frequently-used target among
all virtual branches

VGHR VGHR corresponding to the virtual branch

with a BTB-Miss or Least-frequently-used target among

all virtual branches

insert_BTB(V PCA, CORRECT_TARGET)

update_conditional_BP(V PCA, VGHR, TAKEN)

end if

To distinguish between wrong-target and no-target cases,
the training logic accesses the BTB for each virtual branch
(as shown in Algorithm 3).9 If the target address stored in
the BTB for a virtual branch is the same as the correct target
address of the indirect branch (wrong-target case), the
direction predictor is trained as taken and the replacement
policy bits in the BTB entry corresponding to the target
address are updated. Otherwise, the direction predictor is
trained as not-taken. Similarly to the VPC prediction
algorithm, when the training logic finds a virtual branch
with the correct target address, it stops training.

If none of the iterations (i.e., virtual branches) has the
correct target address stored in the BTB, the training logic
inserts the correct target address into the BTB. One design
question is what VPCA/VGHR values should be used for
the newly inserted target address. Conceptually, the choice
of VPCA value determines the order of the newly inserted
virtual branch among all virtual branches. To insert the new
target in the BTB, our current implementation of the
training algorithm uses the VPCA/VGHR values corre-
sponding to the virtual branch that missed in the BTB. If

none of the virtual branches missed in the BTB, our
implementation uses the VPCA/VGHR values correspond-
ing to the virtual branch whose BTB entry has the smallest
least frequently used (LFU) value. Note that the virtual
branch that missed in the BTB or that has the smallest
LFU value in its BTB entry can be determined easily while
the training algorithm iterates over virtual branches.
(However, we do not show this computation in Algorithm 3
to keep the algorithm more readable.)

3.4 Supporting Multiple Iterations per Cycle

The iterative prediction process can take multiple cycles.
The number of cycles needed to make an indirect branch
prediction with a VPC predictor can be reduced if the
processor already supports the prediction of multiple
conditional branches in parallel [51]. The prediction logic
can perform the calculation of VPCA values for multiple
iterations in parallel since VPCA values do not depend on
previous iterations. VGHR values for multiple iterations can
also be calculated in parallel, assuming that previous
iterations were “not-taken” since the prediction process
stops when an iteration results in a “taken” prediction.
We found that the performance benefit of supporting
multiple predictions per cycle is not significant (see
[35, Section 5.4]).

3.5 Pipelining the VPC Predictor

So far, our discussion assumed that conditional branch
prediction structures (the BTB and the direction predictor)
can be accessed in a single-processor clock cycle. However,
in some modern processors, access of the conditional branch
prediction structures takes multiple cycles. To accommo-
date this, the VPC prediction process needs to be pipelined.
We briefly show that our mechanism can be trivially
adjusted to accommodate pipelining.

In a pipelined implementation of VPC prediction, the
next iteration of VPC prediction is started in the next cycle
without knowing the outcome of the previous iteration in a
pipelined fashion. In other words, consecutive VPC predic-
tion iterations are fed into the pipeline of the conditional
branch predictor one after another, one iteration per cycle.
Pipelining VPC prediction is similar to supporting multiple
iterations in parallel. As explained in Section 3.4,
the VPCA value of a later iteration is not dependent on
previous iterations; hence, VPCA values of different
iterations are computed independently. The VGHR value
of a later iteration is calculated assuming that previous
iterations were “not-taken” since the VPC prediction
process stops anyway when an iteration results in a “taken”
prediction. If it turns out that an iteration is not needed
because a previous iteration was predicted as “taken,” then
the later iterations in the branch predictor pipeline are
simply discarded when they produce a prediction. As such,
VPC prediction naturally yields itself to pipelining without
significant hardware modifications.

3.6 Hardware Cost and Complexity

The extra hardware required by the VPC predictor on top
of the existing conditional branch prediction scheme is
as follows:

1. Three registers to store iter, V PCA, and VGHR for
prediction purposes (Algorithm 1).
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9. Note that these extra BTB accesses for training are required only on a
misprediction and they do not require an extra BTB read port. An extra BTB
access holds only one BTB bank per training iteration. Even if the access
results in a bank conflict with the accesses from the fetch engine for all the
mispredicted indirect branches, we found that the performance impact is
negligible due to the low frequency of indirect branch mispredictions in the
VPC prediction mechanism.



2. A hard-coded table, HASHVAL, of 32-bit rando-
mized values. The table has MAX ITER number of
entries. Our experimental results show that
MAX ITER does not need to be greater than 16.
The table is dual-ported to support one prediction
and one update concurrently.

3. A predicted iter value that is carried with each
indirect branch throughout the pipeline. This value
cannot be greater than MAX ITER.

4. Three registers to store iter, V PCA, and VGHR for
training purposes (Algorithms 2 and 3).

5. Two registers to store the V PCA and VGHR values
that may be needed to insert a new target into the
BTB (for the no-target case in Algorithm 3).

Note that the cost of the required storage is very small.

Unlike previously proposed history-based indirect branch

predictors, no large or complex tables are needed to store

the target addresses. Instead, target addresses are naturally

stored in the existing BTB.
The combinational logic needed to perform the computa-

tions required for prediction and training is also simple.

Actual PC and GHR values are used to access the branch

prediction structure in the first iteration of indirect branch

prediction. While an iteration is performed, the VPCA and

VGHR values for the next iteration are calculated and

loaded into the corresponding registers. Therefore, updating

VPCA and VGHR for the next iterations is not on the critical
path of the branch predictor access.

The training of the VPC predictor on a misprediction
may slightly increase the complexity of the BTB update
logic because it requires multiple iterations to access the
BTB. However, the VPC training logic needs to access the
BTB multiple times only on a target misprediction, which is
relatively infrequent, and the update logic of the BTB is not
on the critical path of instruction execution. If needed,
pending BTB and branch predictor updates due to
VPC prediction can be buffered in a queue to be performed
in consecutive cycles. (Note that such a queue to update
conditional branch prediction structures already exists in
some modern processor implementations with limited
number of read/write ports in the BTB or the direction
predictor [40].)

4 EXPERIMENTAL METHODOLOGY

We use a Pin-based [38] cycle-accurate x86 simulator to
evaluate VPC prediction. The parameters of our baseline
processor are shown in Table 2. The baseline processor uses
the BTB to predict indirect branches [37].

The experiments are run using five SPEC CPU2000 INT
benchmarks, five SPEC CPU2006 INT/Cþþ benchmarks,
and two other Cþþ benchmarks. We chose those bench-
marks in SPEC INT 2000 and 2006 INT/Cþþ suites that
gain at least 5 percent performance with a perfect indirect
branch predictor. Table 3 provides a brief description of the
other two Cþþ benchmarks.

We use Pinpoints [45] to select a representative
simulation region for each benchmark using the reference
input set. Each benchmark is run for 200 million x86
instructions. Table 4 shows the characteristics of the
examined benchmarks on the baseline processor. All
binaries are compiled with Intel’s production compiler
(ICC) [25] with the -O3 optimization level.
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TABLE 2
Baseline Processor Configuration

TABLE 3
Evaluated C++ Benchmarks that Are Not Included in SPEC

CPU 2000 or 2006

TABLE 4
Characteristics of the Evaluated Benchmarks

Language and type of the benchmark (Lang/Type), baseline IPC (BASE IPC), potential IPC improvement with perfect indirect branch prediction
(PIBP IPC�), static number of indirect branches (Static IB), dynamic number of indirect branches (Dyn. IB), indirect branch prediction accuracy (IBP
Acc), indirect branch mispredictions per kilo instructions (IB MPKI), conditional branch mispredictions per kilo instructions (CB MPKI). gcc06 is
403.gcc in CPU2006, and gcc is 176.gcc in CPU2000.



5 RESULTS

We have provided an extensive performance characteriza-

tion of VPC prediction on C/Cþþ applications in our

previous paper [35]. In particular, in [35], we provided the

characteristics of indirect branch targets of C/Cþþ applica-

tions, performance comparisons to other indirect branch

predictors, sensitivity of VPC prediction to microarchitec-

ture parameters, and performance of VPC prediction on

server applications. In this paper, after briefly summarizing

the performance of VPC prediction, we focus our attention to

the training options for VPC prediction (Section 5.3), power/

energy consumption analysis (Section 5.4), and the evalua-

tion of VPC prediction on Java applications (Section 7).

5.1 Dynamic Target Distribution

We first briefly analyze the behavior of indirect branch

targets in our benchmark set. Fig. 5 shows the distribution

of the number of dynamic targets for executed indirect

branches. In eon, gap, and ixx, more than 40 percent of the

executed indirect branches have only one target. These

single-target indirect branches are easily predictable with a

simple BTB-based indirect branch predictor. However, in

gcc (50 percent), crafty (100 percent), perlbmk (94 percent),

perlbench (98 percent), sjeng (100 percent), and povray

(97 percent), over 50 percent of the dynamic indirect

branches havemore than five targets. On average, 51 percent

of the dynamic indirect branches in the evaluated bench-

marks have more than five targets.

5.2 Performance of VPC Prediction

Fig. 6a shows the performance improvement of VPC
prediction over the baseline BTB-based predictor when
MAX_ITER is varied from 2 to 16. Fig. 6b shows the indirect
branch MPKI in the baseline and with VPC prediction. In
eon, gap, and namd, where over 60 percent of all executed
indirect branches have at most two unique targets (as
shown in Fig. 5), VPC prediction with MAX_ITER¼2
eliminates almost all indirect branch mispredictions. Al-
most all indirect branches in richards have three or four
different targets. Therefore, when the VPC predictor can
hold four different targets per indirect branch (MAX_
ITER=4), indirect branch MPKI is reduced to only 0.7
(from 13.4 in baseline and 1.8 with MAX_ITER¼2). The
performance of only perlbmk and perlbench continues to
improve significantly as MAX_ITER is increased beyond 6,
because at least 65 percent of the indirect branches in these
two benchmarks have at least 16 dynamic targets. (This is
due to the large switch-case statements in perl that are used
to parse and pattern-match the input expressions. The most
frequently executed/mispredicted indirect branch in perl-
bench belongs to a switch statement with 57 static targets.)
Note that even though the number of mispredictions can be
further reduced when MAX_ITER is increased beyond 12,
the performance improvement actually decreases for
perlbench. This is due to two reasons: 1) storing more
targets in the BTB via a larger MAX_ITER value starts
creating conflict misses and 2) some correct predictions take
longer when MAX_ITER is increased, which increases the
idle cycles in which no instructions are fetched.

On average, VPC prediction improves performance by
26.7 percent over the BTB-based predictor (when MAX_
ITER¼12), by reducing the average indirect branch MPKI
from 4.63 to 0.52. Since a MAX_ITER value of 12 provides
the best performance, most later experiments in this section
use MAX_ITER¼12. We found that using VPC prediction
does not significantly impact the prediction accuracy of
conditional branches in the benchmark set we examined, as
shown in [35].

Fig. 7 shows the distribution of the number of iterations
needed to generate a correct target prediction. On average,
44.6 percent of the correct predictions occur in the first
iteration (i.e., zero idle cycles) and 81 percent of the correct
predictions occur within three iterations. Only in perlbmk
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Fig. 5. Distribution of the number of dynamic targets across executed

indirect branches.

Fig. 6. Performance of VPC prediction: (a) IPC improvement and (b) indirect branch MPKI.



and sjeng, more than 30 percent of all correct predictions
require at least five iterations. Hence, most correct predic-
tions are performed quickly resulting in few idle cycles
during which the fetch engine stalls.

Fig. 8 provides insight into the performance improve-
ment of VPC prediction by showing the distribution of
mispredictions per highly mispredicted static indirect
branches using both the baseline BTB predictor and the
VPC predictor. The left bar for each benchmark shows the
distribution of mispredictions per the Nth most mispre-
dicted static indirect branch, sorted by number of mis-
predictions, using the baseline BTB-based predictor. The
portions of each bar labeled “1” and “2” are the fraction of
all mispredictions caused by, respectively, the “most” and
“second most” mispredicted indirect branch, and so on. The
most mispredicted static indirect branch causes on average
approximately 50 percent of all indirect branch mispredic-
tions. (This fraction varies between 21 percent and 87 percent
depending on the benchmark.) The data show that only a
few indirect branches are responsible for the majority of the
mispredictions. The second set of bars in Fig. 8 shows the
distribution of mispredictions for the same static indirect
branches using the VPC predictor, normalized to the number
of mispredictions with the BTB-based predictor. The
VPC predictor significantly reduces or eliminates the
mispredictions across the board, i.e., for almost all of the
highly mispredicted indirect branches. We conclude that
VPC prediction is effective at reducing misprediction rate
across a large number of different indirect branches.

Even though VPC prediction is very effective at reducing
the indirect branchmisprediction rate, it does not completely

eliminate indirect branch mispredictions. This is due to two
reasons. The first reason is algorithmic: VPC prediction
cannot correctly predict a target address when the target is
not correlated with branch history in the way our prediction
and training algorithms can capture. The second reason is
due to resource contention: the contention and interference
in BTB entries and conditional branch direction predictor
entries between both conditional and indirect branches as
well as different targets of indirect branches can lead to
mispredictions. We analyzed the effects of such contention
and interference in [35].

5.3 Effect of VPC Training: Where to Insert the
Correct Target Address

In Section 3.3.2, we described how the VPC training
algorithm inserts the correct target into the BTB if the
VPC prediction was wrong. Where the correct target is
inserted in the BTB with respect to other targets of the
branch could affect performance because 1) it determines
which target will be replaced by the new target and 2) it
affects the “order” of appearance of targets in a future
VPC prediction loop. This section evaluates different
policies for inserting a target address into the BTB upon a
VPC misprediction.

Fig. 9 shows the performance improvement provided by
four different policies we examine. Naive-Insert-MAXITER
inserts the target address into the BTB without first checking
whether or not it already exists in the BTB entries
corresponding to the virtual branches. The target address
is inserted into the first available virtual branch position, i.e.,
that corresponding to a virtual branch that missed in the
BTB. If none of the virtual branches had missed in the BTB,
the target is always inserted in the MAX_ITER position. The
benefit of this mechanism is that it does not require the
VPC training logic to check all the BTB entries correspond-
ing to the virtual branches; hence, it is simpler to implement.
The disadvantage is that it increases the redundancy of
target addresses in the BTB (hence, it reduces the area-
efficiency of the BTB) since the target address of each virtual
branch is not necessarily unique.

The other three policies we examine require each virtual
branch to have a unique target address, but differ in which
virtual branch they replace if the VPC prediction was
wrong and neither the correct target of the indirect branch
nor an empty virtual branch slot corresponding to the
indirect branch was found in the BTB. Unique-Random

1162 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 9, SEPTEMBER 2009

Fig. 8. Fraction of mispredictions caused by the Nth most mispredicted
static indirect branch. The portions of each bar labeled “1” and “2” are
the fraction of all mispredictions caused by, respectively, the “most” and
“second most” mispredicted indirect branch, and so on. The data are
normalized to the number of mispredictions in the baseline.

Fig. 9. Performance impact of different VPC training schemes.

Fig. 7. Distribution of the number of iterations (for correct predictions)

(MAX_ITER=12).



replaces a BTB entry randomly among all the virtual
branches. Unique-LRU replaces the target address corre-
sponding to the virtual branch whose entry has the least-
recently-used (LRU) value. Unique-LFU is the default
scheme we described in Section 3.3.2, which replaces the
target address corresponding to the virtual branch whose
entry has the smallest LFU-value.

According to Fig. 9, the performance of most bench-
marks—except perlbmk, perlbench, and sjeng—is not
sensitive to the different training policies. Since the number
of dynamic targets per branch is very high in perlbmk,
perlbench, and sjeng (shown in Fig. 5 and [35]), the
contention for virtual branch slots in the BTB is high. For
our set of benchmarks, the Unique-LFU scheme provides the
highest performance (1 percent and 2 percent better than
Unique-LRU and Unique-Random, respectively). We found
that frequently used targets in the recent past are more
likely to be used in the near future, and therefore, it is better
to replace less frequently used target addresses. Hence, we
have chosen the Unique-LFU scheme as our default
VPC training scheme.

5.4 Effect on Power and Energy Consumption

Fig. 10 shows the impact of VPC prediction and TTC
predictors of different sizes on maximum processor power,
overall energy consumption, energy-delay product of the
processor, and the energy consumption of the branch
prediction logic (which includes conditional/indirect pre-
dictors and the BTB). We used the Wattch infrastructure [5]
to measure power/energy consumption, faithfully model-
ing every processing structure and the additional accesses
to the branch predictors. The power model is based on
100 nm technology and a 4 GHz processor.

On average, VPC prediction reduces the overall energy
consumption by 19 percent, which is higher than the

energy reduction provided by the most energy-efficient
TTC predictor (12 KB). The energy reduction is due to the
reduced pipeline flushes and thus reduced amount of time
the processor spends fetching and executing wrong-path
instructions. Furthermore, VPC prediction reduces the
energy-delay product (EDP) by 42 percent, which is also
higher than the EDP reduction provided by the most
energy-efficient TTC predictor. VPC prediction improves
EDP significantly because it improves performance while at
the same time reducing energy consumption.

VPC prediction does not significantly increase the
maximum power consumption of the processor whereas
even a 3 KB TTC predictor results in a 0.3 percent increase
in maximum power consumption due to its additional
hardware overhead. Note that relatively large TTC pre-
dictors significantly increase not only the complexity but
also the energy consumption of the branch prediction unit.
We conclude that VPC prediction is an energy-efficient way
of improving processor performance without significantly
increasing the complexity of the processor front end and the
overall processor power consumption.

6 VPC PREDICTION AND COMPILER-BASED

DEVIRTUALIZATION

Devirtualization is the substitution of an indirect method call
with direct method calls in object-oriented languages
[11], [24], [21], [6], [28]. Ishizaki et al. [28] classify the
devirtualization techniques into guarded devirtualization and
direct devirtualization.

Guarded devirtualization. Fig. 11a shows an example
virtual function call in the Cþþ language. In the example,
depending on the actual type of Shape s, different area
functions are called at runtime. However, even though
there could be many different shapes in the program, if
the types of shapes are mostly either an instance of the
Rectangle class or the Circle class at runtime, the
compiler can convert the indirect call to multiple guarded
direct calls [21], [18], [6], as shown in Fig. 11b. This
compiler optimization is called Receiver Class Prediction
Optimization (RCPO) and the compiler can perform
RCPO based on profiling.

The benefits of this optimization are: 1) it enables other
compiler optimizations. The compiler could inline the direct
function calls or perform interprocedural analysis [18].
Removing function calls also reduces the register save/
restore overhead. 2) The processor can predict the virtual
function call using a conditional branch predictor, which
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Fig. 10. Effect of VPC on energy/power consumption.

Fig. 11. A virtual function call and its devirtualized form.



usually has higher accuracy than an indirect branch
predictor [6]. However, not all indirect calls can be
converted to multiple conditional branches. In order to
perform RCPO, the following conditions need to be fulfilled
[18], [6]:

1. The number of frequent target addresses from a
caller site should be small (1-2).

2. The majority of target addresses should be similar
across input sets.

3. The target addresses must be available at compile-
time.

Direct devirtualization. Direct devirtualization converts
an indirect call into a single unconditional direct call if the
compiler can prove that there is only one possible target for
the indirect call. Hence, direct devirtualization does not
require a guard before the direct call, but requires whole-
program analysis to make sure that there is only one possible
target. This approach enables code optimizations that would
otherwise be hindered by the indirect call. However, this
approach cannot usually be used statically if the language
supports dynamic class loading, like Java. Dynamic recom-
pilation can overcome this limitation, but it requires an
expensive mechanism called on-stack replacement [28].

6.1 Limitations of Compiler-Based Devirtualization

6.1.1 Need for Static Analysis or Accurate Profiling

The application of devirtualization to large commercial
software bases is limited by the cost and overhead of the
static analysis or profiling required to guide the method call
transformation. Devirtualization based on static analysis
requires type analysis, which in turn requires whole
program analysis [28], and unsafe languages like Cþþ also
require pointer alias analysis. Note that these analyses need
to be conservative in order to guarantee correct program
semantics. Guarded devirtualization usually requires accu-
rate profile information, which may be very difficult to
obtain for large applications. Due to the limited applic-
ability of static devirtualization, Ishizaki et al. [28] report
only an average 40 percent reduction in the number of
virtual method calls on a set of Java benchmarks, with the
combined application of aggressive guarded and direct
devirtualization techniques.

6.1.2 Impact on Code Size and Branch Mispredictions

Guarded devirtualization can sometimes reduce perfor-
mance since 1) it increases the static code size by
converting a single indirect branch instruction into multi-
ple guard test instructions and direct calls and 2) it could
replace one possibly mispredicted indirect call with
multiple conditional branch mispredictions, if the guard
tests become hard-to-predict branches [48].

6.1.3 Lack of Adaptivity

The most frequently taken targets chosen for devirtualiza-
tion can be based on profiling, which averages the whole
execution of the program for one particular input set.
However, the most frequently taken targets can be different
across different input sets. Furthermore, the most frequently
taken targets can change during different phases of the
program. Additionally, dynamic linking and dynamic class

loading can introduce new targets at runtime. Compiler-
based devirtualization cannot adapt to these changes in
program behavior because the most frequent targets of a
method call are determined statically and encoded in the
binary.

Due to these limitations, many state-of-the-art compilers
either do not implement any form of devirtualization (e.g.,
GCC 4.0 [19]10) or they implement a limited form of direct
devirtualization that converts only provably monomorphic
virtual function calls into direct function calls (e.g., the
Bartok compiler [48], [42] or the .NET Runtime [43]).

6.2 VPC versus Compiler-Based Devirtualization

VPC prediction is essentially a dynamic devirtualization
mechanism used for indirect branch prediction purposes.
However, VPC’s devirtualization is visible only to the
branch prediction structures. VPC has the following ad-
vantages over compiler-based devirtualization:

1. As it is a hardware mechanism, it can be applied to
any indirect branch without requiring any static
analysis/guarantees or profiling.

2. Adaptivity: Unlike compiler-based devirtualization,
the dynamic training algorithms allow the VPC
predictor to adapt to changes in the most frequently
taken targets or even to new targets introduced by
dynamic linking or dynamic class loading.

3. Because virtual conditional branches are visible only
to the branch predictor, VPC prediction does not
increase the code size, nor does it possibly convert a
single indirect branch misprediction into multiple
conditional branch mispredictions.

On the other hand, the main advantage of compiler-
based devirtualization over VPC prediction is that it enables
compile-time code optimizations. However, as we showed
in our previous paper [35], the two techniques can be used
in combination and VPC prediction provides performance
benefits on top of compiler-based devirtualization. In
particular, using VPC prediction on binaries that are already
optimized with compiler-based devirtualization improves
performance by 11.5 percent (see [35, Section 6.3] for a
detailed analysis).

7 EVALUATION OF VPC PREDICTION

ON OBJECT-ORIENTED JAVA APPLICATIONS

This section evaluates VPC prediction using a set of
modern object-oriented Java applications, the full set of
DaCapo benchmarks [4]. Our goal is to demonstrate the
benefits of VPC prediction on real object-oriented applica-
tions and to analyze the differences in the behavior of
VPC prediction on object-oriented Java programs versus on
traditional C/Cþþ programs (which were evaluated briefly
in Section 5 and extensively in [35]).

7.1 Methodology

We have built an iDNA-based [3] cycle-accurate x86
simulator to evaluate VPC prediction on Java applications.
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10. GCC only implements a form of devirtualization based on class
hierarchy analysis in the ipa-branch experimental branch, but not in the main
branch [44].



iDNA [3] is a dynamic binary instrumentation tool similar
to Pin [38], but capable of tracing Java virtual machines. The
DaCapo benchmarks are run with Sun J2SE 1.4.2_15 JRE on
Windows Vista. Each benchmark is run for 200 million x86
instructions with the small input set. The parameters of our
baseline processor are the same as those we used to evaluate
VPC prediction on C/Cþþ applications as shown in
Table 2.11

Table 5 shows the characteristics of the examined Java
programs on the baseline processor. Compared to the
evaluated C/C++ programs, the evaluated Java programs
have significantly higher number of static and dynamic
indirect branches and indirect branch misprediction rates
(also see Table 4). We found that this difference is due to the
object-oriented nature of the Java programs, which contain a
large number of virtual functions, and the behavior of the
Java Virtual Machine, which uses a large number of indirect
branches in its interpretation and dynamic translation
phases [15]. As a result, the potential performance improve-
ment possible with perfect indirect branch prediction is
significantly higher in the evaluated Java applications
(73.1 percent) than in the evaluated C/Cþþ applications
(32.5 percent).

7.2 Dynamic Target Distribution of Java Programs

Fig. 12 shows the distribution of the number of dynamic
targets for executed indirect branches. Unlike C/Cþþ
programs evaluated in Section 5.1, only 14 percent of
executed indirect branches have a single target and
53 percent of them have more than 20 targets (recall that
51 percent of the indirect branches in the evaluated C/Cþþ
programs had more than five targets). On average,
76 percent of the dynamic indirect branches in the evaluated
Java benchmarks have more than five targets, in contrast to
the 51 percent in the evaluated indirect-branch intensive
C/Cþþ programs. Hsqldb is the only benchmark where
more than 20 percent of the dynamic indirect branches have
only one target, and these monomorphic branches are easily
predictable with a simple BTB-based indirect branch
predictor. The high number of targets explains why the
evaluated Java programs have higher indirect branch
misprediction rates than the evaluated C/Cþþ programs.

We found that there are two major reasons for the high
number of dynamic targets in the Java applications: 1) The
evaluated Java applications are written in object-oriented
style. Therefore, they include many polymorphic virtual

function calls, i.e., virtual function calls that are overridden
by many derived classes, whose overridden forms are
exercised at runtime. 2) The Java virtual machine itself uses
a significant number of indirect jumps with many targets in
its interpretation routines, as shown in previous work on
virtual machines [15].

7.3 Performance of VPC Prediction
on Java Programs

Fig. 13a shows the performance improvement of VPC
prediction over the baseline BTB-based predictor when
MAX_ITER is varied from 2 to 16. Fig. 13b shows the
indirect branch misprediction rate (MPKI) in the
baseline and with VPC prediction. Similarly to the results
for C/Cþþ benchmarks, a MAX_ITER value of 12 provides
the highest performance improvement. All of the 11 Java
applications experience more than 10 percent performance
improvement with VPC prediction and 10 of the 11 applica-
tions experience more than 15 percent performance im-
provement. This shows that the benefits of VPC prediction
are very consistent across different object-oriented Java
applications. On average, VPC prediction provides 21.9 per-
cent performance improvement in the Java applications.

7.3.1 Analysis

Since the majority of indirect branches have more than 10
targets, as MAX_ITER increases, the indirect branch MPKI
decreases (from 11.9 to 5.2), until MAX_ITER equals 12. The
most significant drop in MPKI (from 10.9 to 7.9) happens
when MAX_ITER is increased from 2 to 4 (meaning
VPC prediction can store four different targets for a branch
rather than two). However, when MAX_ITER is greater
than 12, MPKI starts increasing in most of the evaluated
Java applications (unlike in C/Cþþ applications where
MPKI continues to decrease). This is due to the pressure
extra virtual branches exert on the BTB: as Java applications
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Fig. 12. Distribution of the number of dynamic targets across executed

indirect branches in the Java programs.

11. We use a BTB size of 8,192 entries to evaluate Java applications since
they are very branch intensive. However, we also evaluate other BTB sizes
in Section 7.5.1.

TABLE 5
Characteristics of the Evaluated Java Applications (See Table 4 for Explanation of Abbreviations)



have a large number of indirect branches with a large
number of dynamically exercised targets, more targets
contend for the BTB space with higher values of MAX_I-
TER. As a result, BTB miss rate for virtual branches
increases and the prediction accuracy of VPC prediction
decreases. When the MPKI increase is combined with the
additional iteration cycles introduced for some predictions
by higher MAX_ITER values, the performance improve-
ment of VPC prediction drops from 21.9 percent (for
MAX_ITER¼12) to 20.4 percent (for MAX_ITER¼16).

Even though VPC prediction significantly reduces the
misprediction rate from 11.9 to 5.2 MPKI in Java applica-
tions, a significant number of mispredictions still remain.
This is in contrast to the results we obtained for C/Cþþ
applications where VPC prediction was able to eliminate
89 percent of all mispredictions (down to 0.63 MPKI).
Hence, indirect branches in Java applications are more
difficult to predict. Therefore, other techniques like
dynamic predication [31], [30] might be needed to comple-
ment VPC prediction to further reduce the impact of
indirect branches on Java application performance.

Fig. 14 shows the distribution of the number of
iterations needed to generate a correct target prediction.
On average, 44.8 percent of the correct predictions occur
in the first iteration (i.e., zero idle cycles) and 78.7 percent
of the correct predictions occur within four iterations.
Hence, most correct predictions are performed quickly
resulting in few idle cycles during which the fetch engine
stalls. Note that the number of iterations (cycles) it takes
to make a correct prediction is higher for Java applications

than for C/Cþþ applications because indirect branches in

Java applications have a significantly higher number of

dynamically exercised targets per indirect branch.

7.4 VPC Prediction versus Other Indirect Branch
Predictors on Java Applications

Fig. 15 compares the performance of VPC prediction with

the tagged target cache (TTC) predictor [10]. On average,

VPC prediction provides performance improvement

equivalent to that provided by a 3-6 KB TTC predictor

(similarly to the results for C/Cþþ applications [35]).12

Fig. 16 compares the performance of VPC prediction with

the cascaded predictor. On average, VPC prediction

provides the performance provided by a 5.5-11 KB cascaded

predictor. Because the number of static indirect branches is

very high in Java applications, a small cascaded predictor

(cascaded-704 B) performs significantly worse than the

baseline BTB-based predictor. This behavior is not seen in

C/C++ benchmarks because these benchmarks have much

fewer indirect branches with smaller number of targets

that do not cause significant contention in the tables of a

small cascaded predictor. However, even though there are

many static indirect branches in the examined Java applica-

tions, VPC predictor still provides significant performance

improvements equaling those of large cascaded predictors,

without requiring extra storage for indirect branch targets.
Note that the size of the TTC or cascaded predictor that

provides the same performance as VPC prediction is

smaller for Java applications than for C/Cþþ applications

[35]. In other words, TTC and cascaded predictors are

relatively more effective in Java than C/Cþþ applications.

This is because of the large indirect branch and target

working set size of Java applications, which can better

utilize the extra target storage space provided by specia-

lized indirect branch predictors.
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Fig. 13. Performance of VPC prediction on Java applications: (a) IPC improvement and (b) indirect branch MPKI.

12. In the examined Java applications, increasing the size of the TTC
predictor up to 48 KB continues providing large performance improve-
ments, whereas doing so results in very little return in performance for C/
Cþþ applications. A larger TTC predictor is better able to accommodate the
large indirect branch target working set of Java applications whereas a small
TTC predictor is good enough to accommodate the small target working set
of C/Cþþ applications. Hence the difference in the effect of TTC size on
performance between Java versus C/Cþþ applications.

Fig. 14. Distribution of the number of iterations (for correct predictions) in

the Java programs (MAX_ITER¼12).



7.5 Effect of Microarchitecture Parameters on VPC
Prediction Performance on Java Applications

7.5.1 Effect of BTB Size

Table 6 shows the effect of the baseline BTB size on VPC
prediction performance on Java applications. Similarly
to what we observed for C/Cþþ applications [35],
VPC prediction provides higher performance improvements
as BTB size increases. However, with smaller BTB sizes, VPC
prediction’s performance improvement is smaller on Java
applications than on C/Cþþ applications. For example,
with a 512-entry BTB, VPC prediction improves the
performance of Java applications by 6.3 percent whereas it
improves the performance of C/Cþþ applications by
18.5 percent [35]. As Java applications have very large
indirect branch and target address working sets, VPC
prediction results in a larger contention (i.e., conflict misses)
in the BTB in these applications than in C/Cþþ applica-
tions, thereby delivering a smaller performance improve-
ment. Even so, the performance improvement provided by
VPC prediction with very small BTB sizes is significant for
Java applications. We conclude that VPC prediction is
very effective on Java applications for a wide variety of
BTB sizes.

7.5.2 Effect of a Less Aggressive Processor

Fig. 17 shows the performance of VPC and TTC predictors
on a less aggressive baseline processor that has a 20-stage
pipeline, 4-wide fetch/issue/retire rate, 128-entry instruc-
tion window, 16 KB perceptron branch predictor, 4K-entry
BTB, and 200-cycle memory latency. Similarly to our
observation for C/Cþþ applications [35], since the less
aggressive processor incurs a smaller penalty for a branch

misprediction, improved indirect branch handling provides
smaller performance improvements than in the baseline
processor. However, VPC prediction still improves perfor-
mance of Java applications by 11.1 percent on a less
aggressive processor. In fact, all Java applications except
xalan experience very close to or more than 10 percent
performance improvement with VPC prediction. This is
different from what we have seen for C/Cþþ applications
on the less aggressive processor: some applications saw
very large performance improvements with VPC prediction
whereas others saw very small. Thus, we conclude that
VPC prediction’s performance improvements are very
consistent across the Java applications on both aggressive
and less aggressive baseline processors.

7.6 Effect of VPC Prediction on Power and Energy
Consumption of Java Applications

Fig. 18 shows the impact of VPC prediction and TTC/
cascaded predictors of different sizes on maximum
processor power, overall energy consumption, energy-
delay product of the processor, and the energy consump-
tion of the branch prediction logic. On average, VPC
prediction reduces the overall energy consumption by
22 percent, and energy-delay product (EDP) by 36 percent.
Similarly to what we observed for C/Cþþ applications in
Section 5.4, VPC prediction provides larger reductions in
energy consumption on Java applications than the most
energy-efficient TTC predictor (12 KB) as well as the most
energy-efficient cascaded predictor (11 KB). Moreover,
VPC prediction does not significantly increase maximum
power consumption (less than 0.1 percent) whereas a 12 KB
TTC predictor and an 11 KB cascaded predictor result in,
respectively, 2.1 percent and 2.2 percent increase in power
consumption due to the extra storage and prediction
structures they require. We conclude that VPC prediction
is an energy- and power-efficient indirect branch handling
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Fig. 17. VPC prediction versus TTC on a less aggressive processor.

Fig. 16. Performance of VPC prediction versus cascaded predictor.

TABLE 6
Effect of Different BTB Sizes in Java Applications

Fig. 15. Performance of VPC prediction versus tagged target cache.



technique that provides significant performance improve-
ments in object-oriented Java applications without signifi-
cantly increasing the energy consumption or complexity of
the processor front end.

To provide more insight into the reduction in energy
consumption and EDP, Fig. 19 shows the percentage change
in pipeline flushes, fetched instructions, and executed
instructions due to VPC prediction and TTC/cascaded
predictors. VPC prediction reduces the number of pipeline
flushes by 30.1 percent, which results in a 47 percent
reduction in the number of fetched instructions and a
23.4 percent reduction in the number of executed instruc-
tions. Hence, VPC prediction reduces energy consumption
significantly due to the large reduction in the number of
fetched/executed instructions. Note that even though a
12 KB TTC predictor provides a larger reduction in pipeline
flushes, it is less energy efficient than the VPC predictor due
to the significant extra hardware it requires.

8 OTHER RELATED WORK

We have already discussed related work on indirect branch
prediction in Section 2.2. [35], and Sections 5, 6, and 7
provide extensive comparisons of VPC prediction with
three of the previously proposed indirect branch predictors,
finding that VPC prediction, without requiring significant
hardware, provides the performance benefits provided
by other predictors of much larger size. Here, we briefly
discuss other related work in handling indirect branches.

We [31], [30] recently proposed handling hard-to-predict
indirect branches using dynamic predication [36]. In this
technique, if the target address of an indirect branch is
found to be hard to predict, the processor selects two (or
more) likely targets and follows the control-flow paths after
all of the targets by dynamically predicating the instruc-
tions on each path. When the indirect branch is resolved,
instructions on the control-flow paths corresponding to the
incorrect targets turn into NOPs. Unlike VPC prediction,
dynamic predication of indirect branches requires compiler
support, new instructions in the instruction set architecture,
and significant hardware support for dynamic predication
(as described in [36]). However, the two approaches can
be combined and used together: dynamic predication
can be a promising approach to reduce the performance
impact of indirect branches that are hard to predict with
VPC prediction.

Roth et al. [46] proposed dependence-based precompu-
tation, which precomputes targets for future virtual func-
tion calls as soon as an object reference is created. This
technique avoids a misprediction if the result of the
computation is correct and ready to be used when the
future instance of the virtual function call is fetched.
However, it requires a dedicated and costly precomputation
engine. In contrast, VPC prediction has two advantages:
1) it does not require any pre-computation logic and 2) it is
generally applicable to any indirect branch rather than only
for virtual function calls.

Pure software approaches have been proposed specifi-
cally for mitigating the performance impact due to virtual
function calls. These approaches include themethod cache in
Smalltalk-80 [11], polymorphic inline caches [23], and type
feedback/devirtualization [24], [28].Aswe show in Section 6,
the benefit of devirtualization is limited by its lack of
adaptivity. We compare and contrast VPC prediction with
compiler-based devirtualization extensively in Section 6.

Finally, Ertl and Gregg [15] proposed code replication
and superinstructions to improve indirect branch prediction
accuracy on virtual machine interpreters. In contrast to this
scheme, VPC prediction is not specific to any platform and
is applicable to any indirect branch.

9 CONCLUSION

This paper proposed and evaluated the VPC prediction
paradigm. The key idea of VPC prediction is to treat an
indirect branch instruction as multiple “virtual” condi-
tional branch instructions for prediction purposes in the
microarchitecture. As such, VPC prediction enables the use
of existing conditional branch prediction structures to
predict the targets of indirect branches without requiring
any extra structures specialized for storing indirect branch
targets. Our evaluation shows that VPC prediction, with-
out requiring complicated structures, achieves the perfor-
mance provided by other indirect branch predictors that
require significant extra storage and complexity. On a set
of indirect branch intensive C/Cþþ applications and
modern object-oriented Java applications, VPC prediction,
respectively, provides 26.7 percent and 21.9 percent
performance improvement, while also reducing energy
consumption significantly.

We believe the performance impact of VPC prediction
will further increase in future applications that will be
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Fig. 19. Pipeline flushes and fetched/executed instructions.Fig. 18. Energy/power consumption on Java programs.



written in object-oriented programming languages and that

will make heavy use of polymorphism since these languages

were shown to result in significantly more indirect branch

mispredictions than traditional C/Fortran-style languages.

By making available to indirect branches the rich, accurate,

highly optimized, and continuously improving hardware

used to predict conditional branches, VPC prediction can

serve as an enabler encouraging programmers (especially

those concerned with the performance of their code) to use

object-oriented programming styles, thereby improving the

quality and ease of software development.
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[29] D.A. Jiménez and C. Lin, “Dynamic Branch Prediction with
Perceptrons,” Proc. Seventh Int’l Symp. High Performance Computer
Architecture (HPCA ’00), 2001.

[30] J.A. Joao, O. Mutlu, H. Kim, R. Agarwal, and Y.N. Patt,
“Improving the Performance of Object-Oriented Languages with
Dynamic Predication of Indirect Jumps,” Proc. 13th Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’08), 2008.

[31] J.A. Joao, O. Mutlu, H. Kim, and Y.N. Patt, “Dynamic Predication
of Indirect Jumps,” IEEE Computer Architecture Letters, May 2007.

[32] D. Kaeli and P. Emma, “Branch History Table Predictions of
Moving Target Branches due to Subroutine Returns,” Proc. 18th
Ann. Int’l Symp. Computer Architecture (ISCA ’91), 1991.

[33] J. Kalamatianos and D.R. Kaeli, “Predicting Indirect Branches via
Data Compression,” Proc. 31st Ann. ACM/IEEE Int’l Symp.
Microarchitecture (MICRO ’98), 1998.

[34] R.E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
vol. 19, no. 2, pp. 24-36, Mar./Apr. 1999.

[35] H. Kim, J.A. Joao, O. Mutlu, C.J. Lee, Y.N. Patt, and R. Cohn, “VPC
Prediction: Reducing the Cost of Indirect Branches via Hardware-
Based Dynamic Devirtualization,” Proc. 34th Ann. Int’l Symp.
Computer Architecture (ISCA ’07), 2007.

[36] H. Kim, J.A. Joao, O. Mutlu, and Y.N. Patt, “Diverge-Merge
Processor (DMP): Dynamic Predicated Execution of Complex
Control-Flow Graphs Based on Frequently Executed Paths,” Proc.
39th Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO ’06),
2006.

[37] J.K.F. Lee and A.J. Smith, “Branch Prediction Strategies and
Branch Target Buffer Design,” Computer, vol. 17, no. 1, Jan. 1984.

KIM ET AL.: VIRTUAL PROGRAM COUNTER (VPC) PREDICTION: VERY LOW COST INDIRECT BRANCH PREDICTION USING CONDITIONAL... 1169



[38] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V.J. Reddi, and K. Hazelwood, “Pin: Building Custo-
mized Program Analysis Tools with Dynamic Instrumentation,”
Proc. Programming Language Design and Implementation (PLDI ’05),
2005.

[39] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A Full System Simulation Platform,” Computer, vol. 35,
no. 2, pp. 50-58, Feb. 2002.

[40] T. McDonald, “Microprocessor with Branch Target Address Cache
Update Queue,” US patent 7,165,168, 2007.

[41] S. McFarling, “Combining Branch Predictors,” Technical Report
TN-36, Digital Western Research Laboratory, June 1993.

[42] Microsoft Research, Bartok Compiler, http://research.microsoft.
com/act/, 2007.

[43] V. Morrison, “Digging into Interface Calls in the .NET Frame-
work: Stub-Based Dispatch,” http://blogs.msdn.com/vancem/
archive/2006/03/13/550529.aspx, 2007.

[44] D. Novillo, Personal communication, Mar. 2007.
[45] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and

A. Karunanidhi, “Pinpointing Representative Portions of
Large Intel Itanium Programs with Dynamic Instrumenta-
tion,” Proc. 37th Ann. IEEE/ACM Int’l Symp. Microarchitec-
ture (MICRO ’04), 2004.

[46] A. Roth, A. Moshovos, and G.S. Sohi, “Improving Virtual Function
Call Target Prediction via Dependence-Based Pre-Computation,”
Proc. Int’l Conf. Supercomputing (ICS ’99), 1999.

[47] A. Seznec and P. Michaud, “A Case for (Partially) Tagged
Geometric History Length Branch Prediction,” J. Instruction-Level
Parallelism (JILP), vol. 8, Feb. 2006.

[48] D. Tarditi, Personal communication, Nov. 2006.
[49] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, “POWER4

System Microarchitecture,” IBM Technical White Paper, Oct. 2001.
[50] M. Wolczko, Benchmarking Java with the Richards Benchmark,

http://research.sun.com/people/mario/java_benchmarking/
richards/richards.html, 2007.

[51] T.-Y. Yeh, D. Marr, and Y.N. Patt, “Increasing the Instruction
Fetch Rate via Multiple Branch Prediction and Branch Address
Cache,” Proc. Seventh Int’l Conf. Supercomputing (ICS ’93), 1993.

Hyesoon Kim received the BA degree in
mechanical engineering from Korea Advanced
Institute of Science and Technology (KAIST),
the MS degree in mechanical engineering from
Seoul National University, and the MS and PhD
degrees in computer engineering from the
University of Texas at Austin. She is an assistant
professor in the School of Computer Science at
Georgia Institute of Technology. Her research
interests include high-performance energy-effi-

cient heterogeneous architectures, and programmer-compiler-micro-
architecture interaction. She is a member of the IEEE and the IEEE
Computer Society.
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