ARM HPC Ecosystem and the Reemergence of Vectors

[Invited Paper]

Alejandro Rico
ARM
~ Austin, TX, USA
alejandro.rico@arm.com

José A. Joao

~ Austin, TX, USA
jose.joao@arm.com

Chris Adeniyi-Jones
ARM
Cambridge, UK
chris.adeniyijones@arm.com

Eric Van Hensbergen

~ Austin, TX, USA
eric.vanhensbergen@arm.com

ABSTRACT

ARM’s involvement in funded international projects has
helped pave the road towards ARM-based supercomputers.
ARM and its partners have collaborately grown an HPC
ecosystem with software and hardware solutions that pro-
vide choice in a unified software ecosystem. Partners have
announced important HPC deployments resulting from col-
laborations around the globe. One of the key enabling tech-
nologies for ARM in HPC is the Scalable Vector Extension,
an instruction set extension for vector processing. This pa-
per discusses ARM’s journey into HPC, the current state
of the ARM HPC ecosystem, the approach to HPC node
architecture co-design, and details on the Scalable Vector
Extension as a future technology representing the reemer-
gence of vectors.

CCS Concepts

eComputer systems organization — Single in-
struction, multiple data; Multicore architectures;
eComputing methodologies — Massively parallel and
high-performance simulations;

Keywords

ARM,; High-performance computing; Scalable Vector Exten-
sion; vector processing; HPC

1. INTRODUCTION

Modeling and simulation of physical phenomena has es-
tablished itself as one of the three pillars of science together
with theory and experimentation. Despite the extraordi-
nary performance improvement in supercomputing over the
last three decades, with current top systems performance in
the scale of petaFLOPS (10'® floating-point operations per

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CF’17, May 15-17, 2017, Siena, Italy
© 2017 ACM. ISBN 978-1-4503-4487-6/17/05. .. $15.00
DOL: http://dx.doi.org/10.1145/3075564.3095086

second -FLOPS- on 64-bit values), great societal challenges
in fields such as environment, energy, health, materials and
transportation require higher levels of performance to simu-
late larger problems with higher resolution and more accu-
rate models. These requirements have been exacerbated by
the availability of enormous amounts of data and recent ad-
vances in machine learning - enabling reasoning about and
providing solutions to complex systems thereby giving birth
to innovative fields such as precision medicine, smart cities,
smart factories and precision agriculture.

The next milestone in the quest for higher performance
for science is exascale: systems able to provide performance
in the scale of exaFLOPS (10'® 64-bit FLOPS). The abil-
ity to cram an increasing amount of transistors in a single
chip without increasing power density, commonly referred
to as Moore’s Law, is slowing down. Achieving higher per-
formance levels at reasonable power figures is, therefore, in-
creasingly challenging and requires more innovation and en-
gineering efforts.

ARM’s business model is based on licensing intellectual
property (IP) to partners. Informally speaking, this can be
seen as the outsourcing of processor technology R&D. ARM
develops the ARM architecture (including the instruction
set), microarchitectural implementations of processor com-
ponents such as core, sub-system and graphics, and opti-
mized physical implementations of those components. At
the same time, it has built a software ecosystem that is
leveraged by, contributed to and maintained by the part-
nership. This business model has been greatly successful in
mobile computing for consumer electronics thanks to pro-
viding scope for partner differentiation, leading to a myriad
of solutions for end products, boosting innovation through
competition and collaboration in the ecosystem. The result
is the availability of technologies and devices with extraordi-
narily increasing levels of performance and energy efficiency.

The efforts of ARM and its partners in the domain of high-
end systems are creating an ecosystem of hardware and soft-
ware components for high-performance computing (HPC).
The key enabling technologies include the ARMvS8 archi-
tecture |13|; optimized operating systems, compilers, math
libraries, development environment, debugging and profiling
tools [5]; and reliability, availability and serviceability (RAS)
support. Early fruits of these long-term efforts are appar-
ent in multiple announcements of deployments of large-scale
systems based on ARM’s ecosystem technology [14} |6l |7].

329

http://dx.doi.org/10.1145/3075564.3095086

Great advances in ARM’s road to HPC have been ac-
complished in the context of funded international projects.
The EU-funded Mont-Blanc project |1} |17] led the early ex-
ploration of using ARM mobile technology for HPC [16].
Mont-Blanc achievements have helped position ARM and its
ecosystem as a viable player in HPC and also aided the de-
velopment of the HPC software stack. Other funded projects
are expanding Mont-Blanc’s reach focusing on certain en-
abling technologies. The FastForward-2 project funded by
the US Department of Energy is looking at future compute
node architectures for HPC.

One of the main enabling technologies for future ARM-
based HPC systems is the ARM Scalable Vector Extension
(SVE) [19], which evolved in the context of FastForward-2.
SVE is the latest confirmation of the reemergence of vectors
as an essential technology for HPC, and is the central piece
to achieve higher levels of performance and efficiency for
future ARM-based HPC systems.

This paper discusses the work ARM and its partners have
developed in the context of the Mont-Blanc and FastForward-
2 projects and details the key features of SVE for exploiting
higher levels of parallelism across a wide range of applica-
tions and system configurations from multiple partners in
the ARM HPC ecosystem.

2. ROAD TO HPC

ARM Cortex-A9 was the first ARM core with the combi-
nation of hardware floating-point unit (codenamed VFPv3),
floating-point single-instruction multiple data unit (code-
named NEON) and symmetric multi-processor (SMP) sup-
port with up to four cores in a shared-memory configuration.

The Mont-Blanc project selected Cortex-A9 as the build-
ing block of Tibidabo, the first ARM-based HPC cluster
with 128 nodes and a complete HPC software stack [18].
This prototype was a vehicle to drive the porting of funda-
mental parts of the HPC software stack including math li-
braries, compiler, runtimes, profiling and performance anal-
ysis tools. It demonstrated real HPC applications scaling to
the maximum available number of cores in the system.

Mont-Blanc has had three stages, the first two finished in
2015 and 2016 respectively, and the third is on-going. In the
first stage, the main line of work was to evaluate the suit-
ability of mobile processors for HPC [16]. As part of this ef-
fort, the project deployed a 1080-node prototype, named the
Mont-Blanc prototype, which is fully-commissioned with a
full HPC software stack and a rich set of applications show-
ing good scalability on the heterogeneous elements in the
system, namely two Cortex-Al15 cores and one Mali-T604
GPU per node [17]. These efforts helped identify and pri-
oritize requirements for future platforms, such as 64-bit ad-
dressing, RAS features such as pervasive ECC support, im-
proved off-chip interfaces and optimized libraries.

The ARMvS architecture implemented by 64-bit cores in
the Cortex-A family complied with the requirement of wider
addressability. Current high-end core and sub-system IP
such as Cortex-A73 and Coherent Mesh Network (CMN)
600 include end-to-end RAS support. ARM contributes to
the development of emerging high-performance and flexi-
ble interfaces and fabrics to connect to accelerators, mem-
ory and networking, such as the Cache Coherent Inter-
face for Accelerators (CCIX) [3] and Gen-Z [4]. These are
some examples of ARM’s success in filling identified gaps in

high-performance, energy-efficient and capable technology
for HPC.

Apart from assessing requirements and enabling software
and future technologies, ARM and its partners have focused
on research for future processor technologies including ar-
chitecture and micro-architecture solutions for high-end sys-
tems with a focus on HPC. Simulation tools are critical for
research and development and several new methodologies
have been proposed and implemented to enable simulation
of large HPC systems |15} |12} [11} |10} g].

Through these efforts, the ARM HPC ecosystem has
grown with an increasing number of partners involved in
software support, optimizing applications and libraries for
ARM-based platforms, and an increasing offering of hard-
ware based on ARM technology. This has led ARM to par-
ticipate in multiple Exascale programs across the globe with
the goal of deploying ARM-based supercomputers:

e United States: ARM participated in two Depart-
ment of Energy funded Exascale projects: Data Move-
ment Dominates and FastForward-2.

e European Union: Through FP7 and Horizon 2020,
ARM has been involved in several funded pre-Exascale
projects including the Mont-Blanc program that de-
ployed one of the first ARM prototype HPC systems.

e Japan: At ISC2016, Fujistu and RIKEN announced
that the Post-K system targeted at Exascale will be
based on ARMv8 with the Scalable Vector Extension.

e China: James Lin, vice director for the Center of HPC
at Shanghai Jiao Tong University claims China will
build three pre-Exascale prototypes to select the ar-
chitecture for their Exascale system. The three proto-
types are based on AMD, SunWei and ARMvS.

Section Bl describes the state of the nation in the ARM
HPC Ecosystem in terms of the availability of software and
hardware solutions. Section [] gives details about the focus
and work to develop future technologies for high-performance
and energy-efficient ARM-based node architectures for HPC.

3. ARM HPC ECOSYSTEM

The ARM HPC ecosystem is diverse and vibrant across
the globe, with an increasing number of partners providing
silicon, software, training and design support, and becoming
part of consortia that include ARM.

3.1 Software Ecosystem for HPC

ARM engages with partners to provide all the pieces nec-
essary for a software ecosystem for HPC, including Linux
OS, compilers, libraries, debuggers, profilers and job sched-
ulers. The current offerings for ARM platforms are a mix of
open source, commercial products and ported applications
and packages.

ARM is a silver member of OpenHPC, a community effort
to provide a common, verified set of open source packages
for HPC deployments. The OpenHPC build infrastructure
uses ARM-based systems to test that all packages success-
fully build on ARMv8 with the CentOS and SUSE operating
systems. Table [I]|lists the major included components.

Furthermore, there is a plethora of open source projects
for packages and applications that have been successfully

330

Table 1: Non-exhaustive list of OpenHPC package components

Functional areas Components

Base OS
Administrative Tools
Provisioning
Resource Mgmt.

I/0O Services
Numerical/Scientific Libraries
I/O Libraries
Compiler Families
MPI Families
Development Tools
Performance Tools

Warewulf

ported to ARM HPC. Examples include GROMACS, Open-
FOAM, NAMD, QuantumESPRESSO, Geant 4, LAMMPS,
WRF, Unified Communication X (UCX), and OpenSHMEM.

ARM also develops and supports a set of commercial HPC
products that are jointly tested and tuned for performance:

¢ ARM C/C++ Compiler: for Linux user-space HPC
applications, based on LLVM.

e ARM Performance Libraries: BLAS, LAPACK, FFT,
tuned for Cortex-A72, Cortex-A57 and Cortex-Ab53,
maintained and supported for a wide-range of ARM-
based systems-on-chip (SoCs).

e ARM SVE C/C++ Compiler: generates SVE code via
auto-vectorization, intrinsics and assembly.

e ARM Code Advisor: provides prioritized advice for
programmers in-line with original source code.

e ARM Instruction Emulator: runs future ARM archi-
tectures on today’s hardware, profiles and generates
report for Code Advisor.

e Allinea Forge (DDT+MAP): development suite for C,
C++ and Fortran including debugger and profiler.

e Allinea Performance Reports: performance analysis
and profiling tool for HPC parallel applications.

3.2 ARM-based HPC Systems

ARM HPC hardware partners such as HP, Gigabyte and
SoftIron provide rackable solutions built with high-end ARM-
based SoCs such as Applied Micro X-Gene, Cavium Thun-
derX and AMD Opteron A1100. Although these parts target
server platforms, they also support the features and inter-
faces necessary for HPC.

There have been several announcements for ARM-based
HPC deployments starting in 2017.

e Isambard supercomputer in University of Bristol: Cray
CS-400 system with 10000+ ARMvS8 cores and opti-
mized software stack. Installation Mar-Dec 2017 [6].

e Mont-Blanc 3 prototype: Bull (Atos) Sequana system
with Cavium ThunderX2 processors [7].

e Post-K supercomputer: Fujitsu HPC system with cus-
tom cores implementing ARMv8 and the Scalable Vec-
tor Extension |14].

RHEL/CentOS 7.1, SLES 12
Conman, Ganglia, Lmod, LosF, ORCM, Nagios, pdsh, prun

SLURM, Munge, Altair PBS Pro

Lustre client (community version)

Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, Mumps
HDF5 (pHDF5), NetCDF (C++ and Fortran), Adios

GNU (gcc, g++, gfortran)

OpenMPI, MVAPICH2

Autotools (autoconf, automake, libtool), Valgrind, R, SciPy/NumPy
PAPI, Intel IMB, mpiP, pdtoolkit, TAU

4. EXASCALE NODE ARCHITECTURE

ARM is working on several fronts to design the right hard-
ware components, interfaces and software for a node archi-
tecture for Exascale. This architecture will integrate future
and emerging key technologies to provide high levels of com-
pute performance, scalability, data bandwidth and energy
efficiency. Finding the right dimensioning for the best in-
terplay of these three factors is fundamental to achieve a
balanced architecture:

e High compute performance: an effective way to achieve
high performance and efficiency is the exploitation of
data-level parallelism (DLP). Vector processing allows
the execution of many operations over many operands
in parallel specified by a single instruction. It re-
duces the need for the core to extract operations to
be executed in parallel through instruction-level par-
allelism discovery, which requires expensive hardware
structures for the bookkeeping of a wide window of
instructions and speculation mechanisms that, on mis-
predictions, are detrimental to efficiency. The ARM
Scalable Vector Extension (SVE) provides a rich vec-
tor instruction set to exploit data-level parallelism and
take ARM-based processors to the next performance
and efficiency level. More details on SVE in Section

e Application scalability: compute nodes include multi-
ple processing cores targeting thread-level parallelism
(TLP). Parallel applications can benefit by partition-
ing the problem and mapping compute onto cores.
This partitioning and scheduling must use the right
granularity to provide sufficient parallelism for high
core utilization and minimize parallelization overheads.

e 3D die-stacked memory: with high levels of DLP and
TLP, the many high-throughput cores accessing data
concurrently will put pressure on the memory sub-
system, especially in the case of data-intensive applica-
tions. 3D die-stacked memories provide high levels of
bandwidth in a limited physical space by stacking mul-
tiple DRAM dies. Thanks to the use of through-silicon
vias (TSVs), a stack of memory can provide hundreds
of gigabytes per second (GB/s). The high bandwidth
available through the integration of several stacks un-
locks higher-levels of performance in the presence of
many cores concurrently accessing memory.

e Energy efficiency: achieving high-performance within
reasonable power burden is paramount. ARM’s experi-

331

o

RTL Simulation

Co-Design
Centers

Characterization

s 4ot
woesss Y Cpump €9 mp I3,
1‘ HPC Disk Image €12 '™ Studies

I . .

. . ol

Performance
Projection

Figure 1: FastForward-2 co-design cycle.

ence in designing energy-proportional IP targeting bet-
ter battery life is an important asset towards energy-
efficient HPC systems. Examples of smart power man-
agement mechanisms include clock- and power-gating
of idle components, dynamic voltage and frequency
scaling and efficient waiting capabilities (e.g., wait for
interrupt/event).

ARM advocates a co-design approach as a means to
achieve balance among these techonologies. Figure [1| shows
the co-design cycle strategy used in the FastForward-2
project in collaboration with the US national labs and co-
design centers. The co-design centers provide benchmarking
workloads. Those are prepared for execution on real hard-
ware, and simulation on detailed RTL models and gem5 |[9].
Executions on real hardware and RTL serve as references
to calibrate gem5 models for particular core, network and
memory implementations. Gemb is an excellent simulation
framework to characterize applications in the target system
configuration; explore the design space of the node architec-
ture; and project performance of the target applications on
future SoCs integrating emerging technologies. Results are
fed back to the national labs and co-design centers to modify
their applications to better utilize future technologies.

5. SCALABLE VECTOR EXTENSION

The Scalable Vector Extension (SVE) [19, [2] is being
added to the ARM ISA to extend its vector processing ca-
pability and address the needs of HPC, data analytics, com-
puter vision and machine learning. In particular, SVE is a
qualitative jump in ARM’s ability to compete in the HPC
market. A key goal for SVE has been scalability across mul-
tiple implementations, which motivated leaving the vector
length as an implementation choice ({1 to 16} x 128 bits).
The programming model adapts to the current vector length
with no need to modify any executable code.

Longer vectors only achieve significant speedup with high
vector utilization. Some of the key SVE features that enable
better auto-vectorization support are:

e Scalable vector length allowing each implementa-
tion to choose the amount of parallelism.

e Rich addressing modes including non-linear data
accesses.

e Per-lane predication allowing vectorization of loops
with complex control flow.

e Predicate-driven loop control and management
to reduce vectorization overhead relative to scalar code.

e A rich set of horizontal operations for reducible
loop-carried dependencies.

e Vector partitioning and software-managed spec-
ulation to vectorize loops with data-dependent exits.

e Scalarized intra-vector sub-loops to allow vector-
izing loops with complex loop-carried dependencies.

5.1 Main features

SVE is designed for scalability, reasonable implementa-
tion complexity and high impact across multiple application
domains. The scalable vector length avoids the need to cre-
ate a different instruction set for each new vector width to
be implemented, which would not be viable within the 32-
bit encoding space in the ARM ISA. The new architectural
state includes 32 new vector registers (Z0-Z31) that extend
and overlap with the 32 128-bit-wide Advanced SIMD regis-
ters (V0-V31), and can contain 64-, 32-, 16-, and 8-bit data
elements. SVE also adds 16 scalable predicate registers (P0-
P15), a special purpose first-faulting register (FFR), and a
set of control registers (ZCR_-EL1-ZCR_EL3) that allow each
exception level to virtualize the effective vector width.

SVE enables the software to be vector-length agnostic
through the use of vector partitioning, i.e., operating on
a partition of safe elements depending on dynamic condi-
tions, including loop termination conditions and exceptions.
Vector partitioning allows vectorization of loops without an
explicit iteration count by relying on predication. Predi-
cation is central to SVE, since it is used to control loops.
SVE introduces a set of while instructions that use the it-
eration counter and limit to generate predicates and update
the condition flags efficiently.

Transferring data between memory and vector registers
with SVE vector load and store instructions is flexible and
unlikely to limit vectorization. Vector loads/stores are able
to read/write contiguous elements into/from one or mul-
tiple vector registers, as well as non-contiguous elements
(gather /scatter operations) using rich addressing modes.

Effective speculative vectorization requires efficiently deal-
ing with data-dependent termination conditions and excep-
tions. SVE introduces a first-fault mechanism for vector load
instructions that suppresses memory faults if they are not
produced by the first active element in the vector, and sets
the first-fault register (FFR) to indicate which elements were
not successfully loaded. Non-faulting elements are processed
first, the fault is serviced with the correct architectural state,
and the loop continues with the rest of the elements in the
vector, preserving sequential program order without sacri-
ficing efficiency. This mechanism enables safe vectorization
of loops with data-dependent terminations that would not
normally be vectorizable, e.g., the C strlen function.

Complex loop-carried dependencies introduce serialization
in an otherwise vectorizable loop. Techniques like loop split-
ting require unpacking and packing the data to work on it
serially, negating the benefit of vectorization. SVE reduces
that cost by providing instructions to serially process ele-
ments within a vector without having to unpack it.

332

EESVE 128b +Vector%

=@=SVE 128b Speedup =@=SVE 256b Speedup

=0=SVE 512b Speedup

80%

70%

60%

50%

40%

30%

20%

Increase in vectorisation

10%

-10%
R AR O N > © & & &
& ¢ L EE P N
<& & @ of ¢ & &
N) QTS ¢
X @ S
> §
& <
>
KR

0.0
S F & @QQ & & 0,‘5 & © o Q),@'\ &
& @(9 & & & % Q&'("
> 9 & Q'\\@_ Qe's‘
N
£
&

Figure 2: Performance of SVE with vector lengths of 128, 256 and 512 bits.

Dependencies across multiple loop iterations that can re-
solved with simple horizontal reduction operations do not
prevent vectorization since SVE has a rich set of logical,
integer and floating-point horizontal reductions, including
strictly-ordered reductions for floating-point.

5.2 Compilation Challenges

Lacking the knowledge of vector length at compile time
complicates compilation. A simple approach like first un-
rolling a loop by the number of elements in a vector and
merging scalar operations into vector operations does not
work. SVE introduces a family of instructions that use the
current vector length as an implicit operand, e.g., the index
instruction initializes a vector induction variable, and the
inc instructions increments the induction variable based on
the current vector length and a specified element size.

Stack space used by a vector register during spilling and
filling is dependent on vector length. Existing stack regions
are accessed with the statically known byte offsets, while
regions for SVE registers are dynamically allocated and use
implicit multiples of vector length as load and store offsets.

Predicates are introduced by conventional if-conversion.
Conditional branches that exit the loop require the insertion
of a brk instruction that generates a vector partition where
only the lanes prior to the loop exit condition are active.

Vectorizing a reduction loop changes the order of floating-
point operations, potentially producing a different result
than scalar code. Ordering may also differ for different vec-
tor lengths. This can be avoided by disabling vectorization
or using a strongly-ordered reduction operation (fadda).

5.3 Performance

Performance of SVE is heavily dependent on two factors:
the coverage of auto-vectorization achieved by the compiler
and the microarchitectural implementation. We expect the
SVE architecture to be implemented by multiple partners
with a variety of target markets and microarchitectures.

Figure [2] shows the speedup and increase in vectorization
compared to Advanced SIMD, for a variety of HPC appli-
cations from well known benchmark suites. Vectorization is
defined as the fraction of dynamically executed instructions
at a vector length of 128 bits. We simulate a medium-sized,
out-of-order processor that does not correspond to any real
design but is representative of the state-of-the-art. The main
parameters for this model are shown in the reference SVE
paper Table 2]. Our evaluation uses an experimental
compiler that is able to auto-vectorize code for SVE, but is
limited to only C and C++ applications.

For several applications on the right side of the figure,
SVE vectorization is significantly higher than with 128-bit
Advanced SIMD due to all the SVE features that allow
the compiler to vectorize loops with complex control flow,
loop-carried dependencies, non-contiguous memory accesses,
etc. This additional vectorization translates in significant
speedups of up to 3x even for 128-bit SVE. These appli-
cations also scale well with longer SVE vectors, up to 7x
with 512-bit SVE. Performance improvement is not as high
for some heavily vectorized applications in part because we
assume a conservative gather/scatter implementation that
cracks those operations into one memory access per vector
element, which becomes a limit for scalability due to the
higher pressure on the load-store pipeline. This is an ar-

333

tifact of our early modeling efforts and not necessarily the
intended implementation.

On the left of the figure there are benchmarks with very
low or zero vector utilization for both Advanced SIMD and
SVE. Closer investigations showed that the lack of vector-
ization is due to the way the code is structured in these un-
modified benchmarks, or to limitations on the compiler, but
not due to limitations in the architecture. We know that re-
structuring the code in CoMD, for example, can significantly
improve vectorization and reduce execution time. Results
of a refactored CoMD backed by high-bandwidth memory
show over 4x speedup when scaling from 128b to 1024b vec-
tors. The use of some non-vectorized versions of basic math
functions like pow() and log() prevents vectorization, e.g.,
in EP. Graph500 mostly traverses graph structures chasing
pointers, an implementation that is not straightforward to
vectorize. Refactoring algorithms with vectorization in mind
could provide significant benefit from SVE.

A third class of benchmarks in the middle of the figure
shows good additional vectorization with SVE that does not
result in significant speedups due to code generation issues
with the compiler. Sub-optimimal instruction selection and
excessive use of gather instructions (SMG2000) or vector-
izing the outer loop instead of the inner loop and missing
trivially vectorizable loops (MILCmk) are some examples.
We expect SVE compilers and libraries to significantly im-
prove over time.

6. CONCLUSIONS

ARM’s efforts to provide technologies for high-end com-
puting platforms is enabling ARM HPC systems. Examples
of these technologies are the 64-bit ARMvS8 architecture, the
Scalable Vector Extension, the inclusion of RAS support,
and the development of open source and commercial HPC
software solutions for ARM SoCs.

These enabling technologies have evolved within funded
international projects focused on research and development
of ARM-based HPC. The efforts within the Mont-Blanc
project helped provide ARM-based HPC clusters for de-
velopment and porting of applications and the HPC soft-
ware stack. The FastForward-2 project provides a co-design
framework to explore future HPC technologies and improve
reference workloads in the US national labs and co-design
centers to efficiently use those technologies.

The Scalable Vector Extension represents the reemergence
of vectors as an effective solution providing high-performance
and power efficiency. The unique features of SVE, such as
vector-length agnosticism, predication and speculative vec-
torization enable hardware implementations with different
vector widths together with compilers to implement aggres-
sive auto-vectorization techniques and improve vectorization
coverage across a wider range of codes.

The efforts of the ARM ecosystem towards HPC, early
foundational work and recent innovations such as architec-
ture extensions, are poised to show compelling visible results
in the first generation of ARM-based supercomputers in the
next few years.

7. ACKNOWLEDGMENTS

This work has been supported by the FastForward-2 (grant
no. US-DoE-B6098229) and Mont-Blanc 3 (grant no. EU-
H2020-671697) projects.

[7]

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

REFERENCES

http://www.montblanc-project.eu.

A-Profile Architecture Specifications.
http://developer.arm.com/products/architecture/a-
profile/docs.

CCIX: Cache Coherent Interconnect for Accelerators.
WWW.cclxconsortium.coml

GenZ Consortium. [www.genzconsortium.com.

HPC on ARM. http://arm.com/hpc.
https://www.top500.org/news/cray-to-deliver-arm-
powered-supercomputer-to-uk-consortium, Jan. 18
2017.
https://www.top500.org/news/mont-blanc-project-
teams-with-cavium-and-bull-to-build-arm-based-
supercomputer, 117 2017.

M. Alian, U. Darbaz, G. Dozsa, S. Diestelhorst,

D. Kim, and N. S. Kim. dist-gem5: Distributed
Simulation of Computer Clusters. In ISPASS’17, 2017.
N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,

T. Krishna, S. Sardashti, et al. The gem5 Simulator.
ACM SIGARCH Computer Architecture News,
39(2):1-7, 2011.

A. Ferreron, R. Jagtap, S. Bischoff, and R. Rositoru.
Crossing the Architectural Barrier: Evaluting
Representative Regions of Parallel HPC Applications.
In ISPASS’17, 2017.

T. Grass, C. Allande, A. Armejach, A. Rico,

E. Ayguadé, J. Labarta, M. Valero, M. Casas, and
M. Moreto. MUSA: a Multi-level Simulation Approach
for Next-generation HPC Machines. In SC’16,

page 45, 2016.

T. Grass, A. Rico, M. Casas, M. Moreto, and

E. Ayguadé. Taskpoint: Sampled simulation of
task-based programs. In ISPASS’16, pages 296-306,
2016.

R. Grisenthwaite. ARMv8 Technology Preview. ARM
TechCon, 2011.

Y. Ishikawa. The Next Flagship Supercomputer in
Japan. In I1CS’16, 2016.

R. Jagtap, S. Diestelhorst, and A. Hansson. Elastic
traces for fast and accurate system performance
exploration. In ISPASS’16, pages 147-148, 2016.

N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic,
A. Ramirez, and M. Valero. Supercomputing with
commodity CPUs: Are mobile SoCs ready for HPC?
In SC’13, page 40, 2013.

N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. O.
Vilarrubi, C. Gomez, L. Backes, D. Nieto, H. Servat,
X. Martorell, et al. The Mont-Blanc Prototype: An
Alternative Approach for HPC Systems. In SC’16,
pages 444-455, 2016.

N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones,
and A. Ramirez. Tibidabo: Making the case for an
ARM-based HPC System. Future Generation
Computer Systems, 36:322-334, 2014.

N. Stephens, S. Biles, M. Boettcher, J. Eapen,

M. Eyole, G. Gabrielli, M. Horsnell, G. Magklis,

A. Martinez, N. Premillieu, A. Reid, A. Rico, and

P. Walker. The ARM Scalable Vector Extension.
IEEE Micro special issue on Hot Chips, 37(2), 2017.

334

http://www.montblanc-project.eu
http://developer.arm.com/products/architecture/a-profile/docs
http://developer.arm.com/products/architecture/a-profile/docs
www.ccixconsortium.com
www.genzconsortium.com
http://arm.com/hpc
https://www.top500.org/news/cray-to-deliver-arm-powered-supercomputer-to-uk-consortium
https://www.top500.org/news/cray-to-deliver-arm-powered-supercomputer-to-uk-consortium
https://www.top500.org/news/mont-blanc-project-teams-with-cavium-and-bull- to-build-arm-based-supercomputer
https://www.top500.org/news/mont-blanc-project-teams-with-cavium-and-bull- to-build-arm-based-supercomputer
https://www.top500.org/news/mont-blanc-project-teams-with-cavium-and-bull- to-build-arm-based-supercomputer

