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Abstract

Cores in a chip-multiprocessor (CMP) system share multiple hard-
ware resources in the memory subsystem. If resource sharing is
unfair, some applications can be delayed significantly while others
are unfairly prioritized. Previous research proposed separate fairness
mechanisms in each individual resource. Such resource-based fair-
ness mechanisms implemented independently in each resource can
make contradictory decisions, leading to low fairness and loss of per-
formance. Therefore, a coordinated mechanism that provides fair-
ness in the entire shared memory system is desirable.

This paper proposes a new approach that provides fairness in the
entire shared memory system, thereby eliminating the need for and
complexity of developing fairness mechanisms for each individual
resource. Our technique, Fairness via Source Throttling (FST), esti-
mates the unfairness in the entire shared memory system. If the es-
timated unfairness is above a threshold set by system software, FST
throttles down cores causing unfairness by limiting the number of
requests they can inject into the system and the frequency at which
they do. As such, our source-based fairness control ensures fairness
decisions are made in tandem in the entire memory system. FST also
enforces thread priorities/weights, and enables system software to
enforce different fairness objectives and fairness-performance trade-
offs in the memory system.

Our evaluations show that FST provides the best system fairness
and performance compared to four systems with no fairness control
and with state-of-the-art fairness mechanisms implemented in both
shared caches and memory controllers.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: Gen-
eral; C.5.3 [Microcomputers]: Microprocessors; C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]

General Terms: Design, Performance.

1. Introduction

Chip-multiprocessor (CMP) systems commonly share a large portion

of the memory subsystem between different cores. Main memory

and shared caches are two examples of shared resources. Memory

requests from different applications executing on different cores of

a CMP can interfere with and delay each other in the shared mem-

ory subsystem. Compared to a scenario where each application runs

alone on the CMP, this inter-core interference causes the execution of

simultaneously running applications to slow down. However, sharing

memory system resources affects the execution of different applica-

tions very differently because the resource management algorithms
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employed in the shared resources are unfair [22]. As a result some

applications are unfairly slowed down a lot more than others .

Figure 1 shows examples of vastly differing effects of resource-

sharing on simultaneously executing applications on a 2-core CMP

system (Section 4 describes our experimental setup). When bzip2

and art run simultaneously with equal priorities, the inter-core in-

terference caused by the sharing of memory system resources slows

down bzip2 by 5.2X compared to when it is run alone while art slows

down by only 1.15X. In order to achieve system level fairness or

quality of service (QoS) objectives, the system software (operating

system or virtual machine monitor) expects proportional progress

of equal-priority applications when running simultaneously. Clearly,

disparities in slowdown like those shown in Figure 1 due to shar-

ing of the memory system resources between simultaneously run-

ning equal-priority applications is unacceptable since it would make

priority-based thread scheduling policies ineffective [6].
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Figure 1: Disparity in slowdowns due to unfairness

To mitigate this problem, previous works [12, 13, 15, 22–25] on

fair memory system design for multi-core systems mainly focused on

partitioning a particular shared resource (cache space, cache band-

width, or memory bandwidth) to provide fairness in the use of that

shared resource. However, none of these prior works directly target a

fairmemory system design that provides fair sharing of all resources

together. We define a memory system design as fair if the slowdowns

of equal-priority applications running simultaneously on the cores

sharing that memory system are the same (this definition has been

used in several prior works [3, 7, 18, 22, 28]). As shown in previous

research [2], employing separate uncoordinated fairness techniques

together does not necessarily result in a fair memory system design.

This is because fairness mechanisms in different resources can con-

tradict each other. Our goal in this paper is to develop a low-cost

architectural technique that allows system software fairness policies

to be achieved in CMPs by enabling fair sharing of the entire mem-

ory system, without requiring multiple complicated, specialized, and

possibly contradictory fairness techniques for different shared re-

sources.

Basic Idea: To achieve this goal, we propose a fundamentally

new mechanism that 1) gathers dynamic feedback information about



the unfairness in the system and 2) uses this information to dynam-

ically adapt the rate at which the different cores inject requests into

the shared memory subsystem such that system-level fairness objec-

tives are met. To calculate unfairness at run-time, a slowdown value

is estimated for each application in hardware. Slowdown is defined

as Tshared/Talone, where Tshared is the number of cycles it takes to

run simultaneously with other applications and Talone is the number

of cycles it would have taken the application to run alone. Unfair-

ness is calculated as the ratio of the largest slowdown to the smallest

slowdown of the simultaneously running applications. If the unfair-

ness in the system becomes larger than the unfairness threshold set

by the system software, the core that interferes most with the core

experiencing the largest slowdown is throttled down. This means

that the rate at which the most interfering core injects memory re-

quests into the system is reduced, in order to reduce the inter-core

interference it generates. If the system software’s fairness goal is

met, all cores are allowed to throttle up to improve system through-

put while system unfairness is continuously monitored. This con-

figurable hardware substrate enables the system software to achieve

different QoS/fairness policies: it can determine the balance between

fairness and system throughput, dictate different fairness objectives,

and enforce thread priorities in the entire memory system.

Summary of Evaluation: We evaluate our technique on both 2-

core and 4-core CMP systems in comparison to three previously-

proposed state-of-the-art shared hardware resource management

mechanisms. Experimental results across ten multi-programmed

workloads on a 4-core CMP show that our proposed technique im-

proves average system performance by 25.6%/14.5% while reducing

system unfairness by 44.4%/36.2% compared respectively to a sys-

tem with no fairness techniques employed and a system with state-

of-the-art fairness mechanisms implemented for both shared cache

capacity [25] and the shared memory controller [23].

Contributions: We make the following contributions:

1. We introduce a low-cost, hardware-based and system-

software-configurable mechanism to achieve fairness goals specified

by system software in the entire shared memory system.

2. We introduce a mechanism that collects dynamic feedback on

the unfairness of the system and adjusts request rates of the different

cores to achieve the desired fairness/performance balance. By per-

forming source-based fairness control, this work eliminates the need

for complicated individual resource-based fairness mechanisms that

are implemented independently in each resource and that require co-

ordination.

3. We qualitatively and quantitatively compare our proposed

technique to multiple prior works in fair shared cache partitioning

and fair memory scheduling. We find that our proposal, while sim-

pler, provides significantly higher system performance and better

system fairness compared to previous proposals.

2. Background and Motivation

We first present brief background on how we model the shared mem-

ory system of CMPs. We then motivate our approach to providing

fairness in the entire shared memory system by showing how em-

ploying resource-based fairness techniques does not necessarily pro-

vide better overall fairness.

2.1 Shared CMP Memory Systems

In this paper, we assume that the last-level (L2) cache and off-chip

DRAM bandwidth are shared by multiple cores on a chip as in many

commercial CMPs [1, 11, 29, 31]. Each core has its own L1 cache.

Miss Status Holding/information Registers (MSHRs) [16] keep track

of all requests to the shared L2 cache until they are serviced. When

an L1 cache miss occurs, an access request to the L2 cache is created

by allocating an MSHR entry. Once the request is serviced by the L2

cache or DRAM system as a result of a cache hit or miss respectively,

the corresponding MSHR entry is freed and used for a new request.

The number of MSHR entries for a core indicates the total number

of outstanding requests allowed to the L2 cache and DRAM system.

Therefore increasing/decreasing the number of MSHR entries for a

core can increase/decrease the rate at which memory requests from

the core are injected into the shared memory system.

2.2 Motivation

Most prior works on providing fairness in shared resources focus on

partitioning of a single shared resource. However, by partitioning a

single shared resource, the demands on other shared resources may

change such that neither system fairness nor system performance is

improved. In the following example, we describe how constraining

the rate at which an application’s memory requests are injected

to the shared resources can result in higher fairness and system

performance than employing fair partitioning of a single resource.

Figure 2 shows the memory-related stall time1 of equal-priority

applications A and B running on different cores of a 2-core CMP.

For simplicity of explanation, we assume an application stalls when

there is an outstanding memory request, focus on requests going

to the same cache set and memory bank, and assume all shown

accesses to the shared cache occur before any replacement hap-

pens. Application A is very memory-intensive, while application B

is much less memory-intensive. As prior work has observed [23],

when a memory-intensive application with already high memory-

related stall time interferes with a less memory-intensive applica-

tion with much smaller memory-related stall time, delaying the for-

mer improves system fairness because the additional delay causes

a smaller slowdown for the memory-intensive application than for

the non-intensive one. Doing so can also improve throughput by al-

lowing the less memory-intensive application to quickly return to its

compute-intensive portion while the memory-intensive application

continues waiting on memory.

Figures 2(a) and (b) show the initial L2 cache state, access order

and memory-related stall time when no fairness mechanism is em-

ployed in any of the shared resources. Application A’s large number

of memory requests arrive at the L2 cache earlier, and as a result,

the small number of memory requests from application B are signif-

icantly delayed. This causes large unfairness because the compute-

intensive application B is slowed down significantly more than the

already-slow memory-intensive application A. Figures 2(c) and (d)

show that employing a fair cache increases the fairness in utiliza-

tion of the cache by allocating an equal number of ways from the

accessed set to the two equal-priority applications. This increases

application A’s cache misses compared to the baseline with no fair-

ness control. Even though application B gets more hits as a result of

fair sharing of the cache, its memory-related stall time does not re-

duce due to increased interference in the main memory system from

1 Stall-time is the amount of execution time in which the application cannot
retire instructions. Memory-related stall time caused by a memory request
consists of: 1) time to access the L2 cache, and if the access is a miss 2) time
to wait for the required DRAM bank to become available, and finally 3) time
to access DRAM.
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A’s stall time

B’s stall time

A1
A2
A3
A4
A5
A6
A7
B1
B2
B3

Memory access
Wait for busy bank
Cache hit

Access order:
A1, A2, A3, A4, A5, A6, A7, B1, B2, B3

(a) Initial state for no fairness control (b) Memory−related stall time of no fairness control

B’s stall time

A’s stall time

A1
A2
A3
A4
A5
A6
A7
B1
B2
B3

Access order:
A1, A2, A3, A4, A5, A6, A7, B1, B2, B3

(d) Memory−related time of fair cache(c) Initial state for fair cache

B’s stall time

A’s stall time

A1
B1
B2
B3
A2
A3
A4
A5
A6
A7

A1, B1, B2, B3, A2, A3, A4, A5, A6, A7
Access order: Throttled requests

(f) Memory−related stall time of FST

Figure 2: Access pattern and memory-related stall time of requests
with (a, b) no fairness control, (c, d) fair cache, and (e, f) fair source
throttling

application A’s increased misses. Application B’s memory requests

are still delayed behind the large number of memory requests from

application A. Application A’s memory-related stall time increases

slightly due to its increased cache misses, however, since applica-

tion A already had a large memory-related stall time, this slight in-

crease does not incur a large slowdown for it. As a result, fairness

improves slightly, but system throughput degrades because the sys-

tem spends more time stalling rather than computing compared to no

fair caching.

In Figure 2, if the unfair slowdown of application B due to appli-

cation A is detected at run-time, system fairness can be improved by

limiting A’s memory requests and reducing the frequency at which

they are issued into the shared memory system. This is shown in

the access order and memory-related stall times of Figures 2(e) and

(f). If the frequency at which application A’s memory requests are in-

jected into the shared memory system is reduced, the memory access

pattern can change as shown in Figure 2(e). We use the term throttled

requests to refer to those requests from application A that are delayed

when accessing the shared L2 cache due to A’s reduced injection

rate. As a result of the late arrival of these throttled requests, appli-

cation B’s memory-related stall time significantly reduces (because

A’s requests no longer interfere with B’s) while application A’s stall

time increases slightly. Overall, this ultimately improves both system

fairness and throughput compared to both no fairness control and just

a fair cache. Fairness improves because the memory-intensive appli-

cation is delayed such that the less intensive application’s memory

related-stall time does not increase significantly compared to when

running alone. Delaying the memory-intensive application does not

slow it down too much compared to when running alone, because

even when running alone it has high memory-related stall time. Sys-

tem throughput improves because the total amount of time spent

computing rather than stalling in the entire system increases.

The key insight is that both system fairness and throughput can

improve by detecting high system unfairness at run-time and dy-

namically limiting the number of or delaying the issuing of mem-

ory requests from the aggressive applications. In essence, we pro-

pose a new approach that performs source-based fairness in the

entire memory system rather than individual resource-based fair-

ness that implements complex and possibly contradictory fairness

mechanisms in each resource. Sources (i.e., cores) can collectively

achieve fairness by throttling themselves based on dynamic unfair-

ness feedback, eliminating the need for implementing possibly con-

tradictory/conflicting fairness mechanisms and complicated coordi-

nation techniques between them.

3. Fairness via Source Throttling

To enable fairness in the entire memory system, we propose Fairness

via Source Throttling (FST). The proposed mechanism consists of

two major components: 1) runtime unfairness evaluation and 2)

dynamic request throttling.

3.1 Runtime Unfairness Evaluation Overview

The goal of this component is to dynamically obtain an estimate of

the unfairness in the CMP memory system. We use the following

definitions in determining unfairness:

1) We define a memory system design as fair if the slowdowns of

equal-priority applications running simultaneously on the cores of a

CMP are the same, similarly to previous works [3, 7, 18, 22, 28].

2) We define slowdown as Tshared/Talone where Tshared is the

number of cycles it takes to run simultaneously with other applica-

tions and Talone is the number of cycles it would have taken the

application to run alone on the same system.

The main challenge in the design of the runtime unfairness eval-

uation component is obtaining information about the number of cy-

cles it would have taken an application to run alone, while it is run-

ning simultaneously with other applications. To do so, we estimate

the number of extra cycles it takes an application to execute due to

inter-core interference in the shared memory system, called Texcess.

Using this estimate, Talone is calculated as Tshared − Texcess. The

following equations show how Individual Slowdown (IS) of each ap-

plication and Unfairness of the system are calculated.

ISi =
T shared

i

T alone

i

, Unfairness =
MAX{IS0, IS1, ..., ISN−1}

MIN{IS0, IS1, ..., ISN−1}

Section 3.3 explains in detail how the runtime unfairness evalua-

tion component is implemented and in particular how Texcess is es-

timated. Assuming for now that this component is in place, we next

explain how the information it provides is used to determine how

each application is throttled to achieve fairness in the entire shared

memory system.

3.2 Dynamic Request Throttling

This component is responsible for dynamically adjusting the rate at

which each core/application2 makes requests to the shared resources.

This is done on an interval basis as shown in Figure 3.

An interval ends when each core has executed a certain number of

instructions from the beginning of that interval. During each interval

(for example Interval 1 in Figure 3) the runtime unfairness evalua-

tion component gathers feedback used to estimate the slowdown of

each application. At the beginning of the next interval (Interval 2),

the feedback information obtained during the prior interval is used to

make a decision about the request rates of each application for that

2 Since each core runs a separate application, we use the words core and
application interchangeably in this paper. See also Section 3.4.
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Figure 3: FST’s interval-based estimation and throttling

interval. More precisely, slowdown values estimated during Inter-

val 1 are used to estimate unfairness for the system. That unfairness

value is used to determine the request rates for the different applica-

tions for the duration of Interval 2. During the next interval (Interval

2), those request rates are applied, and unfairness evaluation is per-

formed again. The algorithm used to adjust the request rate of each

application using the unfairness estimate calculated in the prior in-

terval is shown in Algorithm 1. To ease explanations, Algorithm 1

is simplified for dual-core configurations. Section 3.5 presents the

more general algorithm for more than two cores.

We define multiple possible levels of aggressiveness for the re-

quest rate of each application. The dynamic request throttling com-

ponent makes a decision to increase/decrease or keep constant the

request rate of each application at interval boundaries. We refer to

increasing/decreasing the request rate of an application as throttling

the application up/down.

Algorithm 1 Dynamic Request Throttling

if Estimated Unfairness > Unfairness Threshold then

Throttle down application with the smallest slowdown
Throttle up application with the largest slowdown
Reset Successive Fairness Achieved Intervals

else

if Successive Fairness Achieved Intervals = threshold then
Throttle all applications up
Reset Successive Fairness Achieved Intervals

else

Increment Successive Fairness Achieved Intervals
end if

end if

At the end of each interval, the algorithm compares the unfair-

ness estimated in the previous interval to the unfairness threshold

that is defined by system software. If the fairness goal has not been

met in the previous interval, the algorithm reduces the request rate of

the application with the smallest individual slowdown value and in-

creases the request rate of the application with the largest individual

slowdown value. This reduces the number and frequency of memory

requests generated for and inserted into the memory resources by the

application with the smallest estimated slowdown, thereby reducing

its interference with other cores. The increase in the request rate of

the application with the highest slowdown allows it to be more ag-

gressive in exploiting Memory-Level Parallelism (MLP) [8] and as

a result reduces its slowdown. If the fairness goal is met for a prede-

termined number of intervals (tracked by a Successive Fairness
Achieved Intervals counter in Algorithm 1), the dynamic request

throttling component attempts to increase system throughput by in-

creasing the request rates of all applications by one level. This is

done because our proposed mechanism strives to increase through-

put while maintaining the fairness goals set by the system software.

Increasing the request rate of all applications might result in unfair-

ness. However, the unfairness evaluation during the interval in which

this happens detects this occurrence and dynamically adjusts the re-

quests rates again.

Throttling Mechanisms: Our mechanism increases/decreases

the request rate of each application in multiple ways: 1) Adjust-

ing the number of outstanding misses an application can have at

any given time. To do so, an MSHR quota, which determines the

maximum number of MSHR entries an application can use at any

given time, is enforced for each application. Reducing MSHR en-

tries for an application reduces the pressure caused by that appli-

cation’s requests on all shared memory system resources by limit-

ing the number of concurrent requests from that application con-

tending for service from the shared resources. This reduces other si-

multaneously running applications’ memory-related stall times and

gives them the opportunity to speed up. 2) Adjusting the frequency

at which requests in the MSHRs are issued to access L2. Reducing

this frequency for an application reduces the number of memory re-

quests per unit time from that application that contend for shared

resources. This allows memory requests from other applications to

be prioritized in accessing shared resources even if the application

that is throttled down does not have high MLP to begin with and

is not sensitive to reduction in the number of its MSHRs. We refer

to this throttling technique as frequency throttling. We use both of

these mechanisms to reduce the interference caused by the applica-

tion that experiences the smallest slowdown on the application that

experiences the largest slowdown.

3.3 Unfairness Evaluation Component Design

Tshared is simply the number of cycles it takes to execute an appli-

cation in an interval. Estimating Talone is more difficult, and FST

achieves this by estimating Texcess for each core, which is the num-

ber of cycles the core’s execution time is lengthened due to inter-

ference from other cores in the shared memory system. To estimate

Texcess, the unfairness evaluation component keeps track of inter-

core interference each core incurs.

Tracking Inter-Core Interference: We consider three sources

of inter-core interference: 1) cache, 2) DRAM bus and bank

conflict, and 3) DRAM row-buffer.3 Our mechanism uses an

InterferencePerCore bit-vector whose purpose is to indicate

whether or not a core is delayed due to inter-core interference.

In order to track interference from each source separately, a copy

of InterferencePerCore is maintained for each interference

source. A main copy which is updated by taking the union of

the different InterferencePerCore vectors is eventually used

to update Texcess as described below. When FST detects inter-

core interference for core i at any shared resource, it sets bit i

of the InterferencePerCore bit-vector, indicating that the core

was delayed due to interference. At the same time, it also sets

an InterferingCoreId field in the corresponding interfered-with

memory request’s MSHR entry. This field indicates which core in-

terfered with this request and is later used to reset the corresponding

bit in the InterferencePerCore vector when the interfered-with

request is scheduled/serviced. We explain this process in more detail

for each resource below in Sections 3.3.1-3.3.3. If a memory request

3 On-chip interconnect can also experience inter-core interference [4]. Feed-
back information similar to that obtained for the three sources of inter-core
interference we account for can be collected for the on-chip interconnect.
That information can be incorporated into our technique seamlessly, which
we leave as part of future work.



has not been interfered with, it’s InterferingCoreId will be the

same as the core id of the core it was generated by.

Updating Texcess: FST stores the number of extra cycles it takes

to execute a given interval’s instructions due to inter-core interfer-

ence (Texcess) in an ExcessCycles counter per core. Every cycle,

if the InterferencePerCore bit of a core is set, FST increments

the corresponding core’s ExcessCycles counter.

Algorithm 2 shows how FST calculates ExcessCycles for

a given core i. The following subsections explain in detail how

each source of inter-core interference is taken into account to set

InterferencePerCore. Table 5 summarizes the required storage

needed to implement the mechanisms explained here.

Algorithm 2 Estimation of Texcess for core i

Every cycle

if inter-core cache or DRAM bus or DRAM bank or
DRAM row-buffer interference then

set InterferencePerCore bit i
set InterferingCoreId in delayed memory request

end if
if InterferencePerCore bit i is set then

Increment ExcessCycles for core i
end if

Every L2 cache fill for a miss due to interference OR

Every time a memory request which is a row-buffer miss due to inter-

ference is serviced
reset InterferencePerCore bit of core i
InterferingCoreId of core i = i (no interference)

Every time a memory request is scheduled to DRAM
if Core i has no requests waiting on any bank which is busy servicing
another core j (j != i) then

reset InterferencePerCore bit of core i
end if

3.3.1 Cache Interference

In order to estimate inter-core cache interference, for each core i we

need to track the last-level cache misses that are caused by any other

core j. To do so, FST uses a pollution filter for each core to approx-

imate such misses. The pollution filter is a bit-vector that is indexed

with the lower order bits of the accessed cache line’s address.4 In

the bit-vector, a set entry indicates that a cache line belonging to the

corresponding core was evicted by another core’s request. When a

request from core j replaces one of core i’s cache lines, core i’s filter

is accessed using the evicted line’s address, and the corresponding

bit is set. When a memory request from core i misses the cache, its

filter is accessed with the missing address. If the corresponding bit

is set, the filter predicts that this line was previously evicted due to

inter-core interference and the bit in the filter is reset. When such a

prediction is made, the InterferencePerCore bit corresponding

to core i is set to indicate that core i is stalling due to cache inter-

ference. Once the interfered-with memory request is finally serviced

from the memory system and the corresponding cache line is filled,

core i’s filter is accessed and the bit is reset.

3.3.2 DRAM Bus and Bank Conflict Interference

Inter-core DRAM bank conflict interference occurs when core i’s

memory request cannot access the bank it maps to, because a re-

quest from some other core j is being serviced by that memory

bank. DRAM bus conflict interference occurs when a core can-

4 We empirically determined the pollution filter for each core to have 2K-
entries in our evaluations.

not use the DRAM because another core is using the DRAM

bus. These situations are easily detectable at the memory con-

troller, as described in [22]. When such interference is detected, the

InterferencePerCore bit corresponding to core i is set to indi-

cate that core i is stalling due to a DRAM bus or bank conflict. This

bit is reset when no request from core i is being prevented access to

DRAM by the other cores’ requests.

3.3.3 DRAM Row-Buffer Interference

This type of interference occurs when a potential row-buffer hit of

core i when running alone is converted to a row-buffer miss/conflict

due to a memory request of some core j when running together with

others. This can happen if a request from core j closes a DRAM

row opened by a prior request from core i that is also accessed by a

subsequent request from core i. To track such interference, a Shadow

Row-buffer Address Register (SRAR) is maintained for each core for

each bank. Whenever core i’s memory request accesses some row R,

the SRAR of core i is updated to row R. Accesses to the same bank

from some other core j do not affect the SRAR of core i. As such, at

any point in time, core i’s SRAR will contain the last row accessed by

the last memory request serviced from that core in that bank. When

core i’s memory request suffers a row-buffer miss because another

core j’s row is open in the row-buffer of the accessed bank, the SRAR

of core i is consulted. If the SRAR indicates a row-buffer hit would

have happened, then inter-core row-buffer interference is detected.

As a result, the InterferencePerCore bit corresponding to core

i is set. Once the memory request is serviced, the corresponding

InterferencePerCore bit is reset.5

3.3.4 Slowdown Due to Throttling

When an application is throttled, it experiences some slowdown

due to the throttling. This slowdown is different from the inter-

core interference induced slowdown estimated by the mechanisms

of Sections 3.3.1 to 3.3.3. Throttling-induced slowdown is a function

of an application’s sensitivity to 1) the number of MSHRs that

are available to it, 2) the frequency of injecting requests into the

shared resources. Using profiling, we determine for each throttling

level l, the corresponding slowdown (due to throttling) f of an

application A. At runtime, any estimated slowdown for application

A when running at throttling level l is multiplied by f . We find that

accounting for this slowdown improves the performance of FST by

1.9% and 0.9% on the 2-core and 4-core systems respectively. As

such, even though we use such information in our evaluations, it is

not fundamental to FST’s benefits.

3.3.5 Implementation Details

Section 3.3 describes how separate copies of

InterferencePerCore are maintained per interference source.

The main copy which is used by FST for updating Texcess is

physically located close by the L2 cache. Note that shared re-

sources may be located far away from each other on the chip.

Any possible timing constraints on the sending of updates to the

InterferencePerCore bit-vector from the shared resources can

be eliminated by making these updates periodically.

5 To be more precise, the bit is reset “row buffer hit latency” cycles before the
memory request is serviced. The memory request would have taken at least
“row buffer hit latency” cycles had there been no interference.



3.4 System Software Support

Different Fairness Objectives: System-level fairness objectives and

policies are generally decided by the system software (the operating

system or virtual machine monitor). FST is intended as architectural

support for enforcing such policies in shared memory system re-

sources. The fairness goal to be achieved by FST can be configured

by system software. To achieve this, we enable the system software

to determine the nature of the condition that triggers Algorithm 1. In

the explanations of Section 3.2, the triggering condition is

“Estimated Unfairnessi > Unfairness Threshold”

System software might want to enforce different triggering con-

ditions depending on the system’s fairness/QoS requirements. To en-

able this capability, FST implements different triggering conditions

from which the system software can choose. For example, the fair-

ness goal the system software wants to achieve could be to keep the

maximum slowdown of any application below a threshold value. To

enforce such a goal, the system software can configure FST such that

the triggering condition in Algorithm 1 is changed to

“Estimated Slowdowni > Max. Slowdown Threshold”

Thread Weights: So far, we have assumed all threads are of

equal importance. FST can be seamlessly adjusted to distinguish be-

tween and provide differentiated services to threads with different

priorities. We add the notion of thread weights to FST, which are

communicated to it by the system software using special instruc-

tions. Higher slowdown values are more tolerable for less important

or lower weight threads. To incorporate thread weights, FST uses

weighted slowdown values calculated as:

WeightedSlowdowni = Measured Slowdowni × Weighti

By scaling the real slowdown of a thread with its weight, a thread

with a higher weight appears as if it slowed down more than it

really did, causing it to be favored by FST. Section 5.4 quantitatively

evaluates FST with the above fairness goal and threads with different

weights.

Thread Migration and Context Switches: FST can be seam-

lessly extended to work in the presence of thread migration and con-

text switches. When a context switch happens or a thread is migrated,

the interference state related to that thread is cleared. When a thread

restarts executing after a context switch or migration, it starts at max-

imum throttle. The interference caused by the thread and the inter-

ference it suffers are dynamically re-estimated and FST adapts to the

new set of co-executing applications.

3.5 General Dynamic Request Throttling

Scalability to More Cores: When the number of cores is greater

than two, a more general form of Algorithm 1 is used. The design of

the unfairness evaluation component for the more general form of

Algorithm 1 is also slightly different. For each core i, FST maintains

a set of N-1 counters, where N is the number of simultaneously

running applications. We refer to these N-1 counters that FST uses

to keep track of the amount of the inter-core interference caused

by any other core j in the system for i as ExcessCyclesij . This

information is used to identify which of the other applications in the

system generates the most interference for core i. FST maintains the

total inter-core interference an application on core i experiences in a

TotalExcessCyclesi counter per core.

Algorithm 3 shows the generalized form of Algorithm 1 that

uses this extra information to make more accurate throttling deci-

sions in a system with more than two cores. The two most important

changes are as follows. First, when the algorithm is triggered due

to unfair slowdown of core i, FST compares the ExcessCyclesij

counter values for all cores j 6= i to determine which other core

is interfering most with core i. The core found to be the most in-

terfering is throttled down. We do this in order to reduce the slow-

down of the core with the largest slowdown value, and improve sys-

tem fairness. Second, cores that are neither the core with the largest

slowdown (Appslow) nor the core generating the most interference

(Appinterfering) for the core with the largest slowdown are throttled

up every threshold1 intervals. This is a performance optimization

that allows cores to be aggressive if they are not the main contribu-

tors to the unfairness in the system.

Preventing Bank Service Denial due to FR-FCFS Memory

Scheduling: First ready-first come first serve (FR-FCFS) [27] is

a commonly used memory scheduling policy which we use in our

baseline system. This memory scheduling policy has the potential to

starve an application with no row-buffer locality in the presence of

an application with high row-buffer locality (as discussed in prior

work [21–24]). Even when the interfering application is throttled

down, the potential for continued DRAM bank interference exists

when FR-FCFS memory scheduling is used, due to the greedy row-

hit-first nature of the scheduling algorithm: a throttled-down appli-

cation with high row-buffer locality can deny service to another ap-

plication continuously. To overcome this, we supplement FST with

a heuristic that prevents this denial of service. Once an applica-

tion has already been throttled down lower than Switchthr%, if

FST detects that this throttled application is generating greater than

Algorithm 3 Dynamic Request Throttling - General Form

if Estimated Unfairness > Unfairness Threshold then

Throttle down application that causes most interference
(Appinterfering) for application with largest slowdown
Throttle up application with the largest slowdown (Appslow)
Reset Successive Fairness Achieved Intervals
Reset Intervals To Wait To Throttle Up for Appinterfering .

// Preventing bank service denial
if Appinterfering throttled lower than Switchthr AND causes
greater than Interferencethr amount of Appslow’s total interference
then

Temporarily stop prioritizing Appinterfering due to row hits in
memory controller

end if

if AppRowHitNotPrioritized has not been Appinterfering for
SwitchBackthr intervals then

Allow it to be prioritized in memory controller based on row-buffer
hit status of its requests

end if

for all applications except Appinterfering and Appslow do

if Intervals To Wait To Throttle Up = threshold1 then

throttle up
Reset Intervals To Wait To Throttle Up for this app.

else

Increment Intervals To Wait To Throttle Up for this app.
end if

end for

else

if Successive Fairness Achieved Intervals = threshold2 then
Throttle up application with the smallest slowdown
Reset Successive Fairness Achieved Intervals

else
Increment Successive Fairness Achieved Intervals

end if

end if



Interferencethr% of Appslow’s total interference, it will tem-

porarily stop prioritizing the interfering application based on row-

buffer hit status in the memory controller. We refer to this applica-

tion as AppRowHitNotPrioritized. If AppRowHitNotPrioritized has

not been the most interfering application for SwitchBackthr num-

ber of intervals, its prioritization over other applications based on

row-buffer hit status will be re-allowed in the memory controller.

This is done because if an application with high row-buffer locality

is not allowed to take advantage of row buffer hits for a long time,

its performance will suffer.

4. Methodology

Processor Model: We use an in-house cycle-accurate x86 CMP sim-

ulator for our evaluation. We faithfully model all port contention,

queuing effects, bank conflicts, and other major DDR3 DRAM sys-

tem constraints in the memory subsystem. Table 1 shows the baseline

configuration of each core and the shared resource configuration for

the 2 and 4-core CMP systems we use.

6.6 GHz out of order processor, 15 stages,
Decode/retire up to 4 instructions

Execution Core
Issue/execute up to 8 micro instructions
256-entry reorder buffer

Fetch up to 2 branches; 4K-entry BTBFront End
64K-entry Hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip Caches Shared unified L2: 1MB (2MB for 4-core), 8-way (16-way
for 4-core), 16-bank, 15-cycle (20-cycle for 4-core), 1 port,
64B line size

On-chip, FR-FCFS scheduling policy [27]
DRAM Controller 128-entry MSHR and memory request buffer

667MHz bus cycle, DDR3 1333MHz [20]
8B-wide data bus

DRAM and Bus Latency: 15-15-15ns (tRP -tRCD-CL)
8 DRAM banks, 16KB row buffer per bank
Round-trip L2 miss latency:
Row-buffer hit: 36ns, conflict: 66ns

Table 1: Baseline system configuration

Workloads: We use the SPEC CPU 2000/2006 benchmarks for

our evaluation. Each benchmark was compiled using ICC (Intel C

Compiler) or IFORT (Intel Fortran Compiler) with the -O3 option.

We ran each benchmark with the reference input set for 200 million

x86 instructions selected by Pinpoints [26] as a representative por-

tion for the 2-core experiments. Due to long simulation times, 4-core

experiments were done with 50 million instructions per benchmark.

We classify benchmarks as highly memory-intensive/with

medium memory intensity/non-intensive for our analyses and work-

load selection. We refer to a benchmark as highly memory-intensive

if its L2 Cache Misses per 1K Instructions (MPKI) is greater than

ten. If the MPKI value is greater than one but less than ten, we say

the benchmark has medium memory-intensity. If the MPKI value is

less than one, we refer to it as non-intensive. This classification is

based on measurements made when each benchmark was run alone

on the 2-core system. Table 2 shows the characteristics of some (due

to space limitations) of the benchmarks that appear in the evaluated

workloads when run on the 2-core system.

Workload Selection We used 18 two-application and 10 four-

application multi-programmed workloads for our 2-core and 4-core

evaluations respectively. The 2-core workloads were chosen such

that at least one of the benchmarks is highly memory intensive.

For this purpose we used either art from SPEC2000 or lbm from

SPEC2006. For the second benchmark of each 2-core workload, ap-

plications of different memory intensity were used in order to cover

Benchmark Type IPC MPKI Benchmark Type IPC MPKI

art FP00 0.10 90.89 milc FP06 0.30 29.33

soplex FP06 0.28 21.24 leslie3d FP06 0.41 20.88

lbm FP06 0.45 20.16 bwaves FP06 0.46 18.71

GemsFDTD FP06 0.46 15.63 astar INT06 0.37 10.19

omnetpp INT06 0.36 10.11 gcc INT06 0.45 6.26

zeusmp FP06 0.82 4.69 cactusADM FP06 0.60 4.51

bzip2 INT06 1.14 2.61 h264ref INT06 1.46 1.28

vortex INT00 1.01 1.24 gromacs FP06 1.06 0.29

namd FP06 2.25 0.18 calculix FP06 2.28 0.05

gamess FP06 2.32 0.04 povray FP06 1.88 0.02

Table 2: Characteristics of 20 SPEC 2000/2006 benchmarks: IPC
and MPKI (L2 cache Misses Per 1K Instructions)

a wide range of different combinations. Of the 18 benchmarks com-

bined with either art or lbm, seven benchmarks have high mem-

ory intensity, six have medium intensity, and five have low mem-

ory intensity. The ten 4-core workloads were randomly selected with

the condition that the evaluated workloads each include at least one

benchmark with high memory intensity and at least one benchmark

with medium or high memory intensity.

FST parameters used in evaluation: Table 3 shows the values

we use in our evaluation unless stated otherwise. There are eight

aggressiveness levels used for the request rate of each application:

2%, 3%, 4%, 5%, 10%, 25%, 50% and 100%. These levels denote

the scaling of the MSHR quota and the request rate in terms of

percentage. For example, when FST throttles an application to 5% of

its total request rate on a system with 128 MSHRs, two parameters

are adjusted. First, the application is given a 5% quota of the total

number of available MSHRs (in this case, 6 MSHRs). Second, the

application’s memory requests in the MSHRs are issued to access

the L2 cache at 5% of the maximum possible frequency (i.e., once

every 20 cycles).

Fairness Successive Fairness Intervals Wait Interval
Threshold Achieved Intervals To Throttle Up Length

Threshold

1.4 4 2 25Kinsts

Switchthr Interferencethr SwitchBackthr

5% 70% 3 intervals

Table 3: FST parameters

Metrics: To measure CMP system performance, we use Har-

monic mean of Speedups (Hspeedup) [18], and Weighted Speedup

(Wspeedup) [28]. These metrics are commonly used in measuring

multi-program performance in computer architecture. In order to

demonstrate fairness improvements, we report Unfairness (see Sec-

tion 3.1), as defined in [7, 22]. Since Hspeedup provides a balanced

measure between fairness and system throughput as shown in previ-

ous work [18], we use it as our primary evaluation metric. In the met-

ric definitions below: N is the number of cores in the CMP system,

IPCalone is the IPC measured when an application runs alone on

one core in the CMP system (other cores are idle), and IPCshared

is the IPC measured when an application runs on one core while

other applications are running on the other cores.

Hspeedup =
N

N−1∑

i=0

IPCalone

i

IPCshared

i

, Wspeedup =

N−1∑

i=0

IPCshared

i

IPCalone

i

5. Experimental Evaluation

We evaluate our proposed techniques on both 2-core and 4-core sys-

tems. We compare FST to four other systems in our evaluations:



1) a baseline system with no fairness techniques employed in the

shared memory system, using LRU cache replacement and FR-FCFS

memory scheduling [27], both of which have been shown to be un-

fair [15, 21, 24]. We refer to this baseline as NoFairness, 2) a sys-

tem with only fair cache capacity management using the virtual pri-

vate caches technique [25], called FairCache, 3) a system with a

network fair queuing (NFQ) fair memory scheduler [24] combined

with fair cache capacity management [25], called NFQ+FairCache,

4) a system with a parallelism-aware batch scheduling (PAR-BS) fair

memory scheduler [23] combined with fair cache capacity manage-

ment [25], called PAR-BS+FairCache.

5.1 2-core System Results

Figure 4 shows system performance and unfairness averaged (using

geometric mean) across 18 workloads evaluated on the 2-core sys-

tem. Figure 5 shows the Hspeedup performance of FST and other

fairness techniques normalized to that of a system without any fair-

ness technique for each of the 18 evaluated 2-core workloads. FST

provides the highest system performance (in terms of Hspeedup) and

the best unfairness among all evaluated techniques. We make several

key observations:
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Figure 4: Average performance of FST on the 2-core system

1. Fair caching’s unfairness reduction comes at the cost of a large

degradation in system performance. This is because fair caching

changes the memory access patterns of applications. Since the mem-

ory access scheduler is unfair, the fairness benefits of the fair cache

itself are reverted by the memory scheduler.

2. NFQ+FairCache together improves system fairness by 30.2%

compared to NoFairness. This degrades Wspeedup (by 12.3%). The

combination of PAR-BS and fair caching improves both system

performance and fairness compared to the combination of NFQ and

a fair cache. The main reason is that PAR-BS preserves both DRAM

bank parallelism and row-buffer locality of each thread better than

NFQ, as shown in previous work [23]. Compared to the baseline

with no fairness control, employing PAR-BS and a fair cache reduces

unfairness by 41.3% and improves Hspeedup by 11.5%. However,

this improvement comes at the expense of a large (7.8%) Wspeedup

degradation.

NFQ+FairCache and PAR-BS+FairCache both significantly de-

grade system throughput (Wspeedup) compared to employing no

fairness mechanisms. This is due to two reasons both of which lead

to the delaying of memory non-intensive applications (Recall that

prioritizing memory non-intensive applications is better for system

throughput [23, 24]). First, the fairness mechanisms that are em-

ployed separately in each resource interact negatively with each

other, leading to one mechanism (e.g. fair caching) increasing the

pressure on the other (fair memory scheduling). As a result, even

though fair caching might benefit system throughput by giving more

resources to a memory non-intensive application, increased misses

of the memory-intensive application due to fair caching causes more

congestion in the memory system, leading to both the memory-

intensive and non-intensive applications to be delayed. Second, even

though the combination of a fair cache and a fair memory controller

can prioritize a memory non-intensive application’s requests, this

prioritization can be temporary. The deprioritized memory-intensive

application can still fill the shared MSHRs with its requests, thereby

denying the non-intensive application entry into the memory system.

Hence, the non-intensive application stalls because it cannot inject

enough requests into the memory system. As a result, the memory

non-intensive application’s performance does not improve while the

memory-intensive application’s performance degrades (due to fair

caching), resulting in system throughput degradation.

3. FST reduces system unfairness by 45% while also improv-

ing Hspeedup by 16.3% and degrades Wspeedup by 4.5% compared

to NoFairness. Unlike other fairness mechanisms, FST improves

both system performance and fairness, without large degradation to

Wspeedup. This is due to two major reasons. First, FST provides

a coordinated approach in which both the cache and the memory

controller receive less frequent requests from the applications caus-

ing unfairness. This reduces the starvation of the applications that

are unfairly slowed down as well as interference of requests in the

memory system, leading to better system performance for almost all

applications. Second, because FST uses MSHR quotas to limit re-

quests injected by memory-intensive applications that cause unfair-

ness, these memory-intensive applications do not deny other applica-

tions’ entry into the memory system. As such, unlike other fairness

techniques that do not consider fairness in memory system buffers

(e.g., MSHRs), FST ensures that unfairly slowed-down applications

are prioritized in the entire memory system, including all the buffers,

caches, and schedulers.

Table 4 summarizes our results for the 2-core evaluations. Com-

pared to the previous technique that provides the highest sys-

tem throughput (i.e. NoFairness), FST provides a significantly bet-

ter balance between system fairness and performance. Compared

to the previous technique that provides the best fairness (PAR-

BS+FairCache), FST improves both system performance and fair-

ness. We conclude that FST provides the best system fairness as

well as the best balance between system fairness and performance.

Unfairness Hspeedup Wspeedup

FST∆ over No Fairness Mechanism -45% 16.3% -4.5%

FST∆ over Fair Cache -30% 26.2% 12.8%

FST∆ over NFQ + Fair Cache -21.2% 16% 8.8%

FST∆ over PAR-BS + Fair Cache -6.3% 4.3% 3.4%

Table 4: Summary of results on the 2-core system

5.2 4-core System Results

5.2.1 Overall Performance

Figure 6 shows unfairness and system performance averaged across

the ten evaluated 4-core workloads. FST provides the best fair-

ness and Hspeedup among all evaluated techniques, while providing

Wspeedup that is equivalent to that of the best previous technique.

Overall, FST reduces unfairness by 44.4%6 and increases system

performance by 25.6% (Hspeedup) and 2.6% (Wspeedup) compared

to NoFairness. Compared to PAR-BS+FairCache, the best perform-

ing previous technique, FST reduces unfairness by 36.2% and in-

6 Similarly, FST also reduces the coefficient of variation, an alternative un-
fairness metric, by 45%.
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Figure 5: Hspeedup of 18 2-core workloads normalized to no fairness control

creases Hspeedup by 14.5%. FST’s large performance improvement

is mainly due to the large reduction in unfairness.7
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Figure 6: Average performance of FST on the 4-core system

Note that the overall trends in the 4-core system are similar to

those in the 2-core system except that previous fairness mechanisms

do not significantly improve fairness in the 4-core system. As ex-

plained in detail in Section 5.2.2, this is due to prioritization of non-

intensive applications in individual resources by previous fairness

mechanisms regardless of whether or not such applications are actu-

ally slowed down.

Figure 7 shows the harmonic speedup performance of FST and

other fairness techniques normalized to that of a system without

any fairness technique for each of the ten workloads. We make two

major conclusions. First, FST improves system performance (both

Hspeedup and Wspeedup) and fairness (not shown in this figure)

compared to no fairness control for almost all workloads. Second,

FST provides the highest Hspeedup compared to the best previous

technique (PAR-BS+FairCache) on eight of the ten workloads. In

the two workloads that PAR-BS+FairCache has higher performance,

it is due to PAR-BS’s ability to gain higher system throughput by

preserving bank parallelism at the memory controller. Using bank

parallelism preserving techniques in conjunction with FST can im-

prove its performance further in such cases. We conclude that FST’s

performance and fairness benefits are consistent across workloads.

5.2.2 Case Study

To provide more insight into the performance and fairness improve-

ments of FST, we analyze one 4-core workload in detail. This work-

load is a mix of applications of different levels of memory intensity.

Art and astar are both highly memory-intensive, while h264ref is

less so and gromacs is non-intensive (as shown in Table 2). When

these applications are run simultaneously on a 4-core system with no

7 Since relative slowdowns of different applications are most important to
improving unfairness and performance using FST, highly accurate Texcess

estimations are not necessary for such improvements. However, we find that
with the mechanisms proposed in this paper the application which causes
the most interference for the most-slowed-down application is on average
identified correctly in 70% of the intervals.
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Figure 7: Normalized speedup of 10 4-core workloads

fairness control, the two memory-intensive applications (especially

art) generate a large amount of memory traffic. Art’s large number

of memory requests to the shared resources unfairly slows down

all other three applications, while art does not slow down signifi-

cantly. Figures 8 and 9 show individual benchmark performance and

system performance/fairness, respectively (note that Figure 8 shows

speedup over alone run which is the inverse of individual slowdown,

defined in Section 3.1). Several observations are in order:
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Figure 9: Case study: system behavior

1. NFQ+FairCache significantly degrades system performance

by 26.9% (Hspeedup) and 21.2% (Wspeedup) compared to no fair-

ness control. All applications but the non-intensive gromacs are



slowed down, causing unfairness to also increase by 4.9% com-

pared to employing no fairness technique. The largest slowdowns

are experienced by the memory-intensive art and astar, which

are deprioritized in the memory system by NFQ because they are

memory-intensive. Second, PAR-BS+FairCache degrades system

performance (Hspeedup) by 11% and makes the system 40% more

unfair. As astar is less memory-intensive than art, PAR-BS prior-

itizes astar over art within each batch of memory requests due to

its shortest-job-first (i.e., least-memory-intensive-thread-first) prior-

itization policy among threads. This causes art to slow down signifi-

cantly while all other applications speed up, thereby leading to large

system unfairness compared to no fairness control.

2. We found that both PAR-BS+FairCache and NFQ+FairCache

overly deprioritize memory-intensive applications in this work-

load, because they do not explicitly detect when such applications

cause slowdowns for others. These techniques simply prioritize non-

intensive applications all the time regardless of whether or not they

are actually slowed down in the memory system. In contrast, our

approach explicitly detects when memory-intensive applications are

causing unfairness in the system. If they are not causing unfairness,

FST does not deprioritize them. As a result, their performance is

not unnecessarily reduced. This effect is observed by examining the

most memory-intensive application’s (art’s) performance with FST.

With FST, art has higher performance than with any of the other

fairness techniques.

3. FST increases system performance by 20.8% (Hspeedup)

while reducing unfairness by 49.2% compared to no fairness control.

This comes at a small loss in system throughput. In this workload,

the memory-intensive art and astar cause significant interference to

each other in all shared resources and to gromacs in the shared cache.

Unlike other fairness techniques, FST dynamically tracks the inter-

ference and the unfairness in the system in a fine-grained manner.

When the memory-intensive applications are causing interference

and increasing unfairness, FST throttles the offending hog applica-

tion(s). In contrast, when the applications are not interfering signifi-

cantly with each other, FST allows them to freely share resources in

order to maximize each application’s performance. The fine-grained

dynamic detection of unfairness and enforcement of fairness mecha-

nisms only when they are needed allow FST to achieve higher system

performance (Hspeedup) and a better balance between fairness and

performance than other techniques.

To provide insight into the dynamic behavior of FST, Figure 10

shows the percentage of time each core spends at each throttling

level. FST significantly throttles down art much of the time (but not

always) to reduce the inter-core interference it generates for all other

applications. As a result, art spends almost 50% of its execution time

at 10% or less of its full aggressiveness. However, even at low throt-

tling levels, art can prevent bank service to the continuous accesses

of astar to the same bank. FST detects this and disallows art’s re-

quests to be prioritized based on row-buffer hits for 40% of all in-

tervals, preventing art from causing bank service denial as described

in Section 3.5. Note that art spends approximately 15% of its time

at throttling level 100, which shows that FST detects times when art

is not causing large interference and does not penalize it. Figure 10

also shows that FST detects interference caused by not only art but

also other applications. Astar, h264ref, and even gromacs are de-

tected to generate high inter-core interference for other applications

in certain execution intervals. As such, FST dynamically adapts its

fairness control decisions to the interference patterns of applications

rather than simply prioritizing memory non-intensive applications.

Therefore, unlike other fairness techniques, FST does not overly de-

prioritize art in the memory system.
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Figure 10: Case Study: application throttling levels

We conclude that FST provides a higher-performance approach

to attaining fairness than coarsely tracking the memory-intensity

of applications and deprioritizing memory-intensive applications

without dynamic knowledge of interference and unfairness. FST

achieves this by tracking unfairness in the system and making fair-

ness/throttling decisions based on that tracking in a finer-grained

manner.

5.3 Effect of Throttling Mechanisms

As described in Section 3.2, FST uses the combination of two mech-

anisms to throttle an application up/down and increase/decrease its

request rate from the shared resources: 1) Applying an MSHR quota

to each application, 2) Adjusting the frequency at which requests in

the MSHRs are issued to access L2. Section 3.5 explains how to pre-

vent bank service denial from FR-FCFS memory scheduling within

FST. Figure 11 shows the effect of each of the different throttling

mechanisms and FST on the 4-core system. Using MSHR quotas is

the more effective of the two mechanisms. By itself, using MSHR

quotas achieves 75% of the performance and the fairness improve-

ment provided by FST. We conclude that using all mechanisms of

FST is better than each throttling mechanism alone in terms of both

fairness and performance.
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Figure 11: Effects of different throttling mechanisms for FST

5.4 Evaluation of System Software Support

Enforcing Thread Priorities: As explained in Section 3.4, FST can

be configured by system software to assign different weights to dif-

ferent threads. As an example of how FST enforces thread weights,

we ran four identical copies of the GemsFDTD benchmark on a 4-

core system and assigned them thread weights of 1, 1, 4 and 8 (recall

that a higher-weight thread is one the system software wants to pri-

oritize). Figure 12 shows that with no fairness technique each copy

of GemsFDTD has an almost identical slowdown as the baseline

does not support thread weights and treats the applications identi-



cally in the shared memory system. However, FST prioritizes the

applications proportionally to their weights, favoring applications

with higher weight in the shared memory system. FST also slows

down the two copies with the same weight by the same amount. We

conclude that FST approximately enforces thread weights, thereby

easing the development of system software which naturally expects

a CMP to respect thread weights in the shared memory system.
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Figure 12: Enforcing thread weights with FST

Enforcing an Alternative Fairness Objective (Maximum Tol-

erable Slowdown): Section 3.4 explained how FST can be config-

ured to achieve a maximum slowdown threshold as determined by

system software, that dictates the maximum tolerable slowdown of

any individual application executing concurrently on the CMP. Fig-

ure 13 shows an example of how FST enforces this fairness objec-

tive when four applications are run together on a 4-core system. The

figure shows each application’s individual slowdown in four differ-

ent experiments where each experiment uses a different maximum

slowdown threshold (ranging from 2 to 3) as set by the system soft-

ware. As tighter goals are set by the system software, FST throttles

the applications accordingly to achieve (close to) the desired max-

imum slowdown. The fairness objective is met until the maximum

slowdown threshold becomes too tight and is violated (for mgrid

and parser), which happens at threshold value 2. We conclude that

FST can enforce different system-software-determined fairness ob-

jectives.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

S
lo

w
d

o
w

n
 o

v
er

 A
lo

n
e 

R
u

n

Max Slowdown 3

Max Slowdown 2.5

Max Slowdown 2.25

Max Slowdown 2

mgrid parser soplex perlbench

Figure 13: Enforcing maximum slowdown with FST

5.5 Hardware Cost

Table 5 shows FST’s required storage. FST does not require any

structure or logic that is on the critical path.

6. Related Work

To our knowledge, this paper provides the first comprehensive

and flexible hardware-based solution that enables system-software-

specified fairness goals to be achieved in the entire shared memory

system of a multi-core processor, without requiring fairness mecha-

nisms to be implemented individually in each shared resource.

Prior work in providing fairness in different shared resources of

CMP systems focused on fair caching [12, 13, 15, 25], fair memory

scheduling [22–24], and fair on-chip interconnects [4, 9, 17]. We

have already provided extensive qualitative and quantitative com-

parisons showing that our mechanism significantly improves system

fairness and performance compared to systems employing the com-

bination of state-of-the-art fair cache capacity management [25] and

fair memory scheduling [23, 24].

Bitirgen et al. [2] propose implementing an artificial neural net-

work that learns each application’s performance response to differ-

ent resource allocations. Their technique searches the space of dif-

ferent resource allocations among co-executing applications to find

a partitioning in the shared cache and memory controller that im-

proves performance. In contrast to FST, this mechanism requires

that resource-based fairness/partitioning techniques are already im-

plemented in each individual resource. In addition, it requires rela-

tively more complex, black-box implementation of artificial neural

networks in hardware.

Herdrich et al. [10] observe that the interference caused by a

lower-priority application on a higher-priority application can be

reduced using existing clock modulation techniques in CMP sys-

tems. However, their proposal does not consider or provide fairness

to equal-priority applications. Zhang et al. [32] propose a software-

based technique that uses clock modulation and prefetcher on/off

control provided by existing hardware platforms to improve fairness

in current multi-core systems compared to other software techniques.

Neither of these prior works propose an online algorithm that dy-

namically controls clock modulation to achieve fairness. In contrast,

FST provides: 1) hardware-based architectural mechanisms that con-

tinuously monitor shared memory system unfairness at run-time and

2) an online algorithm that, upon detection of unfairness, throttles

interfering applications using two new hardware-based throttling

mechanisms (instead of coarse-grained clock modulation) to reduce

the interfering applications’ request rates.

Jahre and Natvig [14] observe that adjusting the number of avail-

able MSHRs can control the total miss bandwidth available to each

thread running on a CMP. However, this prior work does not show

how this observation can be used by an online algorithm to dy-

namically achieve a well-defined fairness or performance goal. In

contrast to this prior work, our work 1) provides architectural sup-

port for achieving different well-defined system-software fairness

objectives while also improving system performance, 2) shows that

using complementary throttling mechanisms and preventing bank

service denial due to FR-FCFS, as done by FST, provides better

fairness/performance than simply adjusting the number of available

MSHRs (see Section 5.3), 3) shows that FST’s approach of throttling

sources based on unfairness feedback provides better system fair-

ness/performance than implementing different fairness mechanisms

in each individual shared resource.

Prior work on SMT processors (e.g., [3, 18, 19, 30]) propose fetch

policies to improve performance and/or fairness in such processors.

These techniques are not applicable to the problem we address, since

they mainly address sharing of execution pipeline resources and not

the shared memory system. Eyerman and Eeckhout [5] propose a

technique to estimate the execution times of simultaneously running

threads had they been run alone. This work estimates interference

in the execution resources and does not deal with memory system

interference in a detailed manner. As such, our proposed memory

interference/slowdown estimation and source throttling techniques

are orthogonal to this prior work.



Cost for N cores Cost for N = 4

ExcessCycles counters N × N × 16 bits/counter 256 bits

2048 entries × N × 24,576 bitsInterference pollution filter per core
(1 pollution bit + (log2 N) bit processor id)/entry

InterferingCoreId per MSHR entry 32 entries/core× N × 2 interference sources × (log2 N) bits/entry 512 bits

InterferencePerCore bit-vector 3 interference sources × N × N × 1 bit 48 bits

Shadow row-buffer address register N × # of DRAM banks (B) × 32 bits/address 1024 bits

Successive Fairness Achieved Intervals counter
Intervals To Wait To Throttle Up counter per core

Inst Count Each Interval per core
(2 × N + 1) × 16 bits/counter 144 bits

Core id per tag store entry in K MB L2 cache 16384 blocks/Megabyte × K × (log2 N) bit/block 65,536 bits

Total hardware cost for N-core system Sum of the above 92092 = 11.24 KB

Percentage area overhead 11.24KB/2048KB
(as fraction of the baseline K MB L2 cache)

Sum (KB) × 100 / (K × 1024)
= 0.55%

Table 5: Hardware cost of FST on a 4-core CMP system

7. Conclusion
We proposed a low-cost architectural technique, Fairness via Source

Throttling (FST), that allows system-software fairness policies to

be achieved in CMPs by enabling fair sharing of the entire mem-

ory system. FST eliminates the need for and complexity of multiple

complicated, specialized, and possibly contradictory fairness tech-

niques for different shared resources. The key idea of our solution is

to gather dynamic feedback information about the slowdowns expe-

rienced by different applications in hardware at run-time and, based

on this feedback, collectively adjust the memory request rates of

sources (i.e., cores) to balance applications’ slowdowns. Our solu-

tion ensures that fairness decisions in the entire memory system are

made in tandem, thereby significantly improving both system perfor-

mance and fairness compared to the state-of-the-art resource-based

fairness techniques implemented independently for different shared

resources. We have also shown that FST is configurable by system

software, allowing it to enforce thread priorities and achieve differ-

ent fairness objectives. We conclude that FST provides a promising

low-cost substrate that can not only improve the performance and

fairness of future multi-core systems but also ease the task of future

multi-core system software in managing shared on-chip hardware

resources.
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