A First Course in Computing
for ALL Engineering Students

Yale Patt
The University of Texas at Austin



What a Computer is to an Engineer
(and in particular, a non-Computer Engineer)

* A Tool used to solve problems
(MatLab, for example)

-- Computers process algorithmically
-- Computers process numbers

* An embedded processor that controls a system
(airplane, factory, heart monitor, traffic flow, etc.)

-- Sensors

-- Actuators

-- Functions

-- Concept of State



What an Engineer needs to know
-- to Use the tool
-- to design the system

How the computer works

How the numbers are represented

How an algorithm “works” on a computer

From sensors (inputs)via “"programs”
to actuators (output)



What an Engineer does NOT need in
this course

Excel

Word

Web browsing

Rote learning of programming



“Problem solving is programming.”

-- Dr. Nick Tredennick
(in Microprocessor Report, May 3, 2004)

* Engineers have ALWAYS solved problems.
(That’s what engineers do.)

-- We don’t describe our engineering problem
to a Mathematician, and expect him/her to
come up with the equations that specify
the problem.

-- We expect the engineer to be able to
describe the problem mathematically.

-- In those cases where we do enlist the help
of a mathematician, we make sure there is
meaningful dialogue between engineer and
mathematician.

+ TODAY'’S problems are solved by computer
programs.

-- Can we entrust the problem solving task to
one who knows nothing about the base
technology?

-- Or, should we expect the engineer to be able
to describe the problem algorithmically?

-- In those cases where we do enlist the help of
a programmer, should we make sure there is
meaningful dialogue between engineer and
programmer?



Why "Intro to Computing” is Essential

*

to ALL Engineering Curricula
(and deserves more than
token exposure to programming)

A Core Competency (like physics, calculus)
-- Use the tool, design the embedded processor

Engineering is about design

-- Students can have a meaningful design experience
IF exposed correctly (modified bottom-up)
to Intro to Computing

Engineering is about Tradeoffs
-- Lots of examples of tradeoffs in programming
(e.g., recursion vs. iteration)

Engineering is about State
-- Lots of examples of state
in computer hardware and software

An ACTIVE learning experience in the
freshman year

-- The student programs from scratch

-- The student debugs his own program

-- The student succeeds.

Engineers want causal, deterministic systems
-- Everything should make sense
-- Matlab, etc. become obvious next steps



Why Intro to Programming in X
is the Wrong Answer

Approach is almost always top-down
-- Results in memorizing, not understanding

Effects of Memorizing

-- Students don’t ever get it.

-- If not 100%, they can’t figure out their
mistakes

-- Cookbook education

Provides no insight into the important tools
(Matlab, etc.)

Provides no insight into how the embedded
processor interacts with their system

Provides no real insight into Tradeoffs, State



What is Important?

Top-down design,
Bottom-up learning for understanding

Abstraction is vital, but...

Not bottom-up,
but "motivated” bottom-up

Engineering is about DESIGN,
first understand the components

From Concrete to Abstract
(Dijkstra notwithstanding)

Cut through protective layers
Memorizing is not understanding

Students do better working in groups



