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...in Two Parts

* Computer Architecture Research:
Some criticisms and my comments

* Tomorrow'’s (circa 2014) Microprocessor



Computer Architecture Research

-- Is it Dead? (Nothing left to do)
-- Does it Need Revitalization?

~-- Is it a Scientific Discipline?



A Scientific Discipline

* Repeatability of Experiments
-- Use of web sites
-- Who said to publish it?

* What About
-- Simplescalar
-- Liberty
-- RAMP
-- Efc.

* Quoting original sources
-- Cache memory?
-- Predicated execution
-- 2-bit counter



Naysayers

Go for the low-hanging fruit

--Easy to get great improvement
(The hard problems still remain)

CAD can’t verify

--Make simpler machines
(Make better CAD tools)

Law of Diminishing Returns

Performance does not track resources applied
(Let’s look more closely)

We don’t need anything faster

1986: MIPS R2000, 1996: Pentium Pro, 2006: ?7?
(Check out the marketplace)

Processor can’t keep up

--Memory Wall
(Algorithm, compiler, microcode)

Our experiment proves it can’t be done

1.85 IPC, for example
(Let’s look more closely)



Moore’s Law:
(a) Physics?
(b) Process Technology?
(c) Microarchitecture?

(d) Psychology?
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Think Outside the Box




Why Revitalization?

+ Pipelining

* Separate I and D caches

« Wide Issue

* Aggressive Branch Prediction

* Speculative Execution

* Qut-of-order execution, in-order retirement
* Trace Cache

* SMT

* SSMT (aka helper threads)

+ CMP

* MLP

* (or, I could look at the compiler’s contributions)



A Few Specifics

* HPS — expanded on Tomasulo

* SMT — expanded on Burton

*+ Perceptron predictor - expanded on
Widrow/Rosenblatt/etc.
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Fundamentals

* Overriding consideration:

What does it cost?
What is the benefit?

*+ Global View

-~-Global vs. Local transformations
* Microarchitecture view

--The three ingredients to performance
* Physical view

--Partitioning

--Power consumption
--Wire delay



Problem

Algorithm

Program

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Electrons



Microarchitecture
(The Requirement)

Instruction
Supply

Data Path

- Data Supply

-Perfect I-Cache
-No Packet Breaks

-100% Br. Pred.

-Perfect Data Flow

Irregular Parallelism

-Enough Functional Units

-Perfect Intraconnect

-Infinite capacity

Zero access time



“"Tomorrow’s” Microprocessor

Wholistic approach
--The transformation hierarchy revisited

X + Superscalar

Compiler/uparch symbiosis
--multiple levels of cache
~-Block~-structured ISA

--part by compiler, part by parch
-~-fast track/slow track

Power Awareness

Multiple cycle times
--asynch/synch together

SSMT (aka helper threads)
More Microcode
Verification Hooks
Internal fault tolerance
Niagra X / Pentium Y

Security



Problem

Electrons



X + superscalar

+ DSP + superscalar

+ graphics + superscalar
+ data base + superscalar
+ networks + superscalar

* vectors + superscalar



Hardware vs. Microarchitecture/Compiler

Rather than ask the Hardware to do the
whole thing,

1. Partition the problem into part
compiler/ part uarch

2. Augment ISA to deliver compiler-
generated information to the uarch

3. Harch manages the optimization,
combining compile-time part and
hardware part.



Fast track / Slow track
(Another compiler/uarch symbiosis)

1. Implement the ISA in two parts:

--Fast track: those things that can go fast

-~-Slow track: those things that can’t

2. Compiler knows what is done where,
and compiles accordingly



Power

*Virtual Allocate, Physical Store (UPC)
*Retire Does Not Necessarily Mean Update
*Partition The Cache, Don’t Replicate
*Demand Only Broadcast

*The Refrigerator

*No More Registers (Only Buffers)

*Block-Structured ISA



An observation:

Computer Architecture will always be

alive and healthy as long as people
can dream

Reason:

Computer architecture is about the interface

between what technology can provide and
what the market demands

i.e.:

As process technology continues to advance,
and dreamers find new uses for computers,
Computer Architecture’s future should be
very, very bright





