Computer Architecture Research
and
Future Microprocessors

Where do we go from here?

Yale N. Patt
The University of Texas at Austin

ISCA-33
Boston, Massachusetts
June 19, 2006



...in Two Parts

* Computer Architecture Research:
Some criticisms and my comments

* Tomorrow'’s (circa 2014) Microprocessor



Computer Architecture Research

-- Is it Dead? (Nothing left to do)
-- Does it Need Revitalization?

~-- Is it a Scientific Discipline?



A Scientific Discipline

* Repeatability of Experiments
-- Use of web sites
-- Who said to publish it?

* What About
-- Simplescalar
-- Liberty
-- RAMP
-- Efc.

* Quoting original sources
-- Cache memory?
-- Predicated execution
-- 2-bit counter



Naysayers

Go for the low-hanging fruit

--Easy to get great improvement
(The hard problems still remain)

CAD can’t verify

--Make simpler machines
(Make better CAD tools)

Law of Diminishing Returns

Performance does not track resources applied
(Let’s look more closely)

We don’t need anything faster

1986: MIPS R2000, 1996: Pentium Pro, 2006: ?7?
(Check out the marketplace)

Processor can’t keep up

--Memory Wall
(Algorithm, compiler, microcode)

Our experiment proves it can’t be done

1.85 IPC, for example
(Let’s look more closely)



Moore’s Law:
(a) Physics?
(b) Process Technology?
(c) Microarchitecture?

(d) Psychology?



B
-~ A & - G r i 0 5
o & _...n...nv ....4.___. )_m_o.v d%u .w.. u._,_.....un .r_....)...w. ..Vh...r&... zM_u

»

|

W

09

Q
L]

<
o
Lo

o
~l
—

o+1

d 8 1231124 “sayoe) 133 =
d€ 39324 “sayae]) [Ey =
dd |82y "sayde) 12212 =

dd U3y "S3YPT) [Py =

dg pue sayoe)) Surtaordwy Jo [enuaog

01

34D Jad suornpnajsuy



Think Outside the Box




Why Revitalization?

+ Pipelining

* Separate I and D caches

« Wide Issue

* Aggressive Branch Prediction

* Speculative Execution

* Qut-of-order execution, in-order retirement
* Trace Cache

* SMT

* SSMT (aka helper threads)

+ CMP

* MLP

* (or, I could look at the compiler’s contributions)



A Few Specifics

* HPS — expanded on Tomasulo

* SMT — expanded on Burton

*+ Perceptron predictor - expanded on
Widrow/Rosenblatt/etc.



HPS
(fwrﬂ/crm Dara Fiow)

Fov Examece, Tae VAX JNSTRVETION

aopez (21)+  (22)

VAX [ustrueTion

o

W

{D&aam

T

+ 1= 4~ zooo\ot UI?"-"“?‘_*“ﬁ@*“‘ ¥

RD

}‘Iwz

J

Mercer )

JR.




p——— ACTY vE Winoow —

N /777
Decop€ | f
’ | Mot ﬂ/} k3 RL
L Ap26 (r)+, (21)
£ y &

21 | &) R2
Hi-8 Wtz eo ¥/ & RO

2L
e+ B« (gt -TcJua Joe = IZH

' Lifi[=[2coc 0
\
e s Tomasclo Rifo || —
Z3l|= | re0

J+{ -?ll-laoosb'Uﬁ-t‘ou[&lﬁo\ﬁx —|bl§+ {Fa-TgL-Tc [uefoe - o~ -]}

&
1t
31

IR

1o




HPS = wWwar /s /v 7

Z-Sreenn

_‘-.—— Active Winoow —i

f MACHMELANC. INST

Drcoder

DATA.FLOW, CLAMM

o At. Tee Noder

y Pestricrep Dara Feow



HPI

STATIC T =STREANM
BRANCH
PACDICTOR
PYN Aff-ﬂc I-STeam
b ACTIVE wWinpow —f | |
pecopent /| TA“‘-(’

MERCER

{SSVE

PATA

NODLS

Tasues AWAImNG

FLtow

Filning

N

FETCH
CONTIOL

:

RETIAMONT
SYSTeEH

DIsST

.l.

l

FU.|| Fu.

-

F.0.

&




Fundamentals

* Overriding consideration:

What does it cost?
What is the benefit?

*+ Global View

-~-Global vs. Local transformations
* Microarchitecture view

--The three ingredients to performance
* Physical view

--Partitioning

--Power consumption
--Wire delay



Problem

Algorithm

Program

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Electrons



Microarchitecture
(The Requirement)

Instruction
Supply

Data Path

- Data Supply

-Perfect I-Cache
-No Packet Breaks

-100% Br. Pred.

-Perfect Data Flow

Irregular Parallelism

-Enough Functional Units

-Perfect Intraconnect

-Infinite capacity

Zero access time



“"Tomorrow’s” Microprocessor

Wholistic approach
--The transformation hierarchy revisited

X + Superscalar

Compiler/uparch symbiosis
--multiple levels of cache
~-Block~-structured ISA

--part by compiler, part by parch
-~-fast track/slow track

Power Awareness

Multiple cycle times
--asynch/synch together

SSMT (aka helper threads)
More Microcode
Verification Hooks
Internal fault tolerance
Niagra X / Pentium Y

Security



Problem

Electrons



X + superscalar

+ DSP + superscalar

+ graphics + superscalar
+ data base + superscalar
+ networks + superscalar

* vectors + superscalar



Hardware vs. Microarchitecture/Compiler

Rather than ask the Hardware to do the
whole thing,

1. Partition the problem into part
compiler/ part uarch

2. Augment ISA to deliver compiler-
generated information to the uarch

3. Harch manages the optimization,
combining compile-time part and
hardware part.



Fast track / Slow track
(Another compiler/uarch symbiosis)

1. Implement the ISA in two parts:

--Fast track: those things that can go fast

-~-Slow track: those things that can’t

2. Compiler knows what is done where,
and compiles accordingly



Power

*Virtual Allocate, Physical Store (UPC)
*Retire Does Not Necessarily Mean Update
*Partition The Cache, Don’t Replicate
*Demand Only Broadcast

*The Refrigerator

*No More Registers (Only Buffers)

*Block-Structured ISA



An observation:

Computer Architecture will always be

alive and healthy as long as people
can dream

Reason:

Computer architecture is about the interface

between what technology can provide and
what the market demands

i.e.:

As process technology continues to advance,
and dreamers find new uses for computers,
Computer Architecture’s future should be
very, very bright





